User menu

Experimental study and kinetic modeling of benzene oxidation in one-dimensional laminar premixed low-pressure flames

Bibliographic reference Detilleux, Valéry ; Vandooren, Jacques. Experimental study and kinetic modeling of benzene oxidation in one-dimensional laminar premixed low-pressure flames. In: Combustion, Explosion and Shock Waves, Vol. 45, no. 4, p. 392-403 (2009)
Permanent URL
  1. D. W. Dockery, C. A. Pope, X. Xu, J. D. Spengler, J. H. Ware, M. E. Fay, B. G. Ferris, and F. E. Speizer, “An association between air pollution and mortality in six U.S. cities,” New Engl. J. Med., 329, 1753–1759 (1993).
  2. Siegmann K., Siegmann H. C., Molecular Precursor of Soot and Quantification of the Associated Health Risk, Current Problems in Condensed Matter (1998) ISBN:9781475799262 p.143-160, 10.1007/978-1-4757-9924-8_14
  3. C. S. McEnally, L. D. Pfefferle, B. Atakan, and K. Kohse-Höinghaus, “Studies of aromatic hydrocarbon formation mechanisms in flames: Progress towards closing the fuel gap,” Prog. Energy Combust. Sci., 32, 247–294 (2006).
  4. Bittner J.D., Howard J.B., Composition profiles and reaction mechanisms in a near-sooting premixed benzene/oxygen/argon flame, 10.1016/s0082-0784(81)80115-4
  5. J. D. Bittner, “A molecular beam mass spectrometry study of fuel-rich and sooting benzene-oxygen flames,” Ph.D. Thesis, Dept of Chemical Engineering, Massachusetts Institute of Technology (1981).
  6. F. Defoeux, V. Dias, C. Renard, P. J. Van Tiggelen, and J. Vandooren, “Experimental investigation of the structure of a sooting premixed benzene/oxygen/argon flame burning at low pressure,” Proc. Combust. Inst., 30, 1407–1415 (2005).
  7. B. Yang, Y. Li, L. Wei, C. Huang, J. Wang, Z. Tian, R. Yang, L. Sheng, Y. Zhang, and F. Qi, “An experimental study of the premixed benzene/oxygene/argon flame with tunable synchrotron photoionization,” Combust. Flame, 31, 555–563 (2007).
  8. V. Detilleux and J. Vandooren, “Molecular beam mass spectrometry analysis of PAH production pathways in C6H6/O2/Ar and C6H6/C2H2/O2/Ar flames,” Combust. Sci. Technol., 180, 1347–1369 (2008).
  9. D. A. Bittker, “Detailed mechanism of oxidation of benzene,” Combust. Sci. Technol., 79, 49–72 (1991).
  10. J. L. Emdee, K. Brezinsky, and I. Glassman, “A kinetic model for the oxidation of toluene near 1200 K,” J. Phys. Chem., 96, 2151–2161 (1992).
  11. R. P. Lindstedt and G. Skevis, “Detailed kinetic modeling of premixed benzene flames,” Combust. Flame, 99, 551–561 (1994).
  12. H.-Y. Zhang and J. T. McKinnon, “Elementary reaction modeling of high-temperature benzene combustion,” Combust. Sci. Technol., 107, 261–300 (1995).
  13. Tan Yewen, Frank Peter, A detailed comprehensive kinetic model for benene oxidation using the recent kinetic results, 10.1016/s0082-0784(96)80275-x
  14. M. U. Alzueta, P. Glarborg, and K. Dam-Johan-sen, “Experimental and kinetic study of the oxidation of benzene.” Int. J. Chem. Kinet., 32, 498–522 (2000).
  15. A. Ristori, P. Dagaut, A. El Bakali, G. Pengloan, and M. Cathonnet, “Benzene oxidation: Experimental results in a JDR and comprehensive kinetic modeling in JSR, shock-tube and flame,” Combust. Sci. Technol., 167, 223–256 (2001).
  16. H. Richter and J. B. Howard, “Formation and consumption of single-ring aromatic hydrocarbons and their precursors in premixed acetylene, ethylene and benzene flames,” Phys. Chem. Chem. Phys., 4, 2038–2055 (2002).
  17. N. Kunioshi, S. Komori, and S. Fukutani, “Numerical analysis of the effect of acetylene and benzene addition to low-pressure benzene-rich flat flames on polycyclic aromatic hydrocarbons formation,” Combust. Flame, 147, 1–10 (2006).
  18. G. L. Agafonov, I. Naydenova, P. A. Vlasov, and J. Warnatz, “Detailed kinetic modeling of soot formation in shock tube pyrolisis and oxidation of toluene and n-heptane,” Proc. Combust. Inst., 31, 575–583 (2007).
  19. N. M. Marinov, W. J. Pitz, C. K. Westbrook, M. J. Castaldi, and S. M. Senkan, “Modeling of aromatic and polycyclic aromatic hydrocarbon formation in premixed methane and ethane flames,” Combust. Sci. Technol., 116, 211–287 (1996).
  20. Castaldi Marco J., Marinov Nick M., Melius Carl F., Huang Jiamei, Senkan Selim M., Pit William J., Westbrook Charles K., Experimental and modeling investigation of aromatic and polycyclic aromatic hydrocarbon formation in a premixed ethylene flame, 10.1016/s0082-0784(96)80277-3
  21. Melius Carl F., Colvin Michael E., Marinov Nick M., Pit William J., Senkan Selim M., Reaction mechanisms in aromatic hydrocarbon formation involving the C5H5 cyclopentadienyl moiety, 10.1016/s0082-0784(96)80276-1
  22. M. Frenklach, “Reaction mechanism of soot formation in flames,” Phys. Chem. Chem. Phys., 4, 2028–2037 (2002).
  23. Venkat C., Brezinsky K., Glassman I., High temperature oxidation of aromatic hydrocarbons, 10.1016/s0082-0784(82)80186-0
  24. G. Bermudez and L. D. Pfefferle, “Laser ionisation time-of-flight mass spectrometry combined with residual gas analysis for the investigation of moderate temperature benzene oxidation,” Combust. Flame, 100, 41–51 (1995).
  25. Y. Chai and L. D. Pfefferle, “An experimental study of benzene oxidation at fuel-lean and stoichiometric equivalence ratio conditions,” Fuel, 77, 313–320 (1998).
  26. J. H. Kent, “A noncatalytic coating for platinum-rhodium thermocouples,” Combust. Flame, 14, 279–281 (1970).
  27. COSILAB®, The Combustion Simulation Laboratory Version 2.0.8. Rotexo GmbH & Co. KG. Haan, Germany (2007);
  28. L. K. Madden, L. V. Moskaleva, S. Kristyan, and M. C. Lin, “Ab initio MO study of the unimolecular decomposition of the phenyl radical,” J. Phys. Chem. A, 101, 6790–6797 (1997).