User menu

A grid refinement approach for a three-dimensional soil-root water transfer model

Bibliographic reference Schroeder, T. ; Tang, L. ; Javaux, Mathieu ; Vanderborght, J. ; Koerfgen, B. ; et. al. A grid refinement approach for a three-dimensional soil-root water transfer model. In: Water Resources Research, Vol. 45 (2009)
Permanent URL
  1. Babuška I., Rheinboldt W. C., A-posteriori error estimates for the finite element method, 10.1002/nme.1620121010
  2. Bear, Dynamics of Fluids in Porous Media (1972)
  3. Briggs , W. L. V. E. Henson S. F. McCormick 2000 A Multigrid Tutorial SIAM Philadelphia, Pa
  4. Carsel Robert F., Parrish Rudolph S., Developing joint probability distributions of soil water retention characteristics, 10.1029/wr024i005p00755
  5. Cheng Y. M., Zhang Y. H., Formulation of a Three-dimensional Numerical Manifold Method with Tetrahedron and Hexahedron Elements, 10.1007/s00603-006-0120-9
  6. DOUSSAN C, Modelling of the Hydraulic Architecture of Root Systems: An Integrated Approach to Water Absorption—Distribution of Axial and Radial Conductances in Maize, 10.1006/anbo.1997.0541
  7. Javaux Mathieu, Schröder Tom, Vanderborght Jan, Vereecken Harry, Use of a Three-Dimensional Detailed Modeling Approach for Predicting Root Water Uptake, 10.2136/vzj2007.0115
  8. Li Y., Fuchs M., Cohen S., Cohen Y., Wallach R., Water uptake profile response of corn to soil moisture depletion, 10.1046/j.1365-3040.2002.00825.x
  9. Mansell R. S., Ma Liwang, Ahuja L. R., Bloom S. A., Adaptive Grid Refinement in Numerical Models for Water Flow and Chemical Transport in Soil, 10.2136/vzj2002.2220
  10. Nochetto , R. H. 2006 Adaptive Finite Element Methods for Elliptic PDE CNA Summer School
  11. Pagès Loïc, Vercambre Gilles, Drouet Jean-Louis, Lecompte François, Collet Catherine, Le Bot Jacques, Root Typ: a generic model to depict and analyse the root system architecture, 10.1023/b:plso.0000016540.47134.03
  12. PASSIOURA J. B., The Transport of Water from Soil to Shoot in Wheat Seedlings, 10.1093/jxb/31.1.333
  13. Pohlmeier A., Oros-Peusquens A., Javaux M., Menzel M. I., Vanderborght J., Kaffanke J., Romanzetti S., Lindenmair J., Vereecken H., Shah N. J., Changes in Soil Water Content Resulting from Root Uptake Monitored by Magnetic Resonance Imaging, 10.2136/vzj2007.0110
  14. Schröder Tom, Javaux Mathieu, Vanderborght Jan, Körfgen Bernd, Vereecken Harry, Effect of Local Soil Hydraulic Conductivity Drop Using a Three-Dimensional Root Water Uptake Model, 10.2136/vzj2007.0114
  15. Schröder Tom, Javaux Mathieu, Vanderborght Jan, Körfgen Bernd, Vereecken Harry, Implementation of a Microscopic Soil–Root Hydraulic Conductivity Drop Function in a Three-Dimensional Soil–Root Architecture Water Transfer Model, 10.2136/vzj2008.0116
  16. Šimunek , J. K. Huang M. Th. van Genuchten 1995 The SWMS_3D code for simulating water flow and solute transport in three-dimensional variably saturated media V. 1.0 Research Rep. No. 139 U.S. Salinity Lab., ARS USDA Riverside, Calif.
  17. Somma , F. J. W. Hopmans V. Clausnitzer 1998 Transient three-dimensional modeling of soil water and solute transport with simultaneous root growth, root water and nutrient uptake Plant Soil 202 2 281 293
  18. van Genuchten M. Th., A Closed-form Equation for Predicting the Hydraulic Conductivity of Unsaturated Soils1, 10.2136/sssaj1980.03615995004400050002x
  19. Wilderotter Olga, 10.1023/a:1023031924963