User menu

Accès à distance ? S'identifier sur le proxy UCLouvain

A comprehensive study on the inclusion mechanism of benzophenone into supramolecular nanoassemblies prepared using two water-soluble associative polymers

  1. Daoud-Mahammed S, Couvreur P, Bouchemal K, Chéron M, Lebas G, Amiel C, et al. Cyclodextrin and polysaccharide-based nanogels: entrapment of two hydrophobic molecules, benzophenone and tamoxifen. Biomacromolecules. 2009;10:547–54.
  2. Duchêne D, Wouessidjewe D, Ponchel G. Cyclodextrins and carrier systems. J Control Release. 1999;62:263–8.
  3. Segura-Sanchez F, Bouchemal K, Lebas G, Vauthier C, Santos-Magalhaes NS, Ponchel G. Elucidation of the complexation mechanism between (+)-usnic acid and cyclodextrins studied by isothermal titration calorimetry and phase-solubility diagram experiments. J Mol Recognit. 2009;22:232–41.
  4. Gref R, Amiel C, Molinard K, Daoud-Mahammed S, Sébille B, Gillet B, et al. New self-assembled nanogels based on host–guest interactions: characterization and drug loading. J Control Release. 2006;111:316–24.
  5. Othman M, Bouchemal K, Couvreur P, Gref R. Microcalorimetric investigation on the formation of supramolecular nanoassemblies of associative polymers loaded with gadolinium chelate derivatives. Int J Pharm. 2009;379:218–25.
  6. Higuchi T, Connors KA. Phase-solubility techniques. In: Reilley CN, editor. Advances in analytical chemistry and instrumentation, vol. 4. New York: Interscience; 1965. p. 117–212.
  7. Bouchemal K, Couenne F, Briançon S, Fessi H, Tayakout M. Stability studies on colloidal suspensions of polyurethane nanocapsules. J Nanosci Nanotechnol. 2006;6:3187–92.
  8. Bouchemal K. New challenges for pharmaceutical formulations and drug delivery system characterisation using isothermal titration calorimetry. Drug Discov Today. 2008;13:960–72.
  9. Renard E, Deratani A, Volet G, Sebille B. Characterization of water soluble high molecular weight β-cyclodextrin-epichlorhydrin polymers. Eur Polym J. 1997;33:49–57.
  10. Arranz F, Sanchez-Chaves M. 13C nuclear magnetic resonance spectral study on the distribution of substituents in relation to the preparation method of partially acetylated dextrans. Polymer. 1988;29:507–12.
  11. Amiel C, Moine L, Sandier A, Brown W, David C, Hauss F, et al. Macromolecular assemblies generated by inclusion complexes between amphiphatic polymers and β-cyclodextrin polymers in aqueous media. In: McCormick CL, editor. Stimuli-responsive water soluble and amphiphilic polymers, vol. 780. Washington, DC: American Chemical Society; 2001. p. 58–81.
  12. Rekharsky MV, Inoue Y. Complexation and chiral recognition thermodynamics of 6-amino-6-deoxy-β-cyclodextrin with anionic, cationic, and neutral chiral guests: counterbalance between van der Waals and coulombic interactions. J Am Chem Soc. 2002;124:813–26.
  13. Wiggins PM. Hydrophobic hydration, hydrophobic forces and protein folding. Physica A. 1997;238:113–28.
  14. Rekharsky MV, Inoue Y. Chiral recognition thermodynamics of β-cyclodextrin: the thermodynamic origin of enantioselectivity and the enthalpy–entropy compensation effect. J Am Chem Soc. 2000;122:4418–35.
  15. Rekharsky MV, Inoue Y. 1:1 and 1:2 complexation thermodynamics of γ-cyclodextrin with N-carbobenzyloxy aromatic amino acids and ω-phenylalkanoic acids. J Am Chem Soc. 2000;122:10949–55.
  16. Illapakurthy AC, Wyandt CM, Stodghill SP. Isothermal titration calorimetry method for determination of cyclodextrin complexation thermodynamics between artemisinin and naproxen under varying environmental conditions. Eur J Pharm Biopharm. 2005;59:325–32.
  17. Inoue Y, Hakushi T, Liu Y, Tong L, Shen B, Jin D. Thermodynamics of molecular recognition by cyclodextrins. 1. Calorimetric titration of inclusion complexation of naphthalenesulfonates with α-, β-, and γ-cyclodextrins: enthalpy–entropy compensation. J Am Chem Soc. 1993;115:475–81.
  18. Cooper A. Thermodynamic analysis of biomolecular interactions. Curr Opin Chem Biol. 1999;3:557–63.
  19. Cooper A, Johnson CM, Lakey JH, Nöllmann M. Heat does not come in different colours: entropy–enthalpy compensation, free energy windows, quantum confinement, pressure perturbation calorimetry, solvation and the multiple causes of heat capacity effects in biomolecular interactions. Biophys Chem. 2001;93:215–30.
  20. Lopez MM, Makhatadze GI. Solvent isotope effect on thermodynamics of hydration. Biophys Chem. 1998;74:117–25.
  21. Dam TK, Oscarson S, Brewer CF. Thermodynamics of binding of the core trimannoside of asparagine-linked carbohydrates and deoxy analogs to Dioclea grandiflora Lectin. J Biol Chem. 1998;273:32812–7.
  22. Ross PD, Rekharsky MV. Thermodynamics of hydrogen bond and hydrophobic interactions in cyclodextrin complexes. Biophys J. 1996;71:2144–54.
  23. Crini G, Cosentino V, Bertini S, Naggi A, Torri G, Vecchi C, et al. Solid state NMR spectroscopy study of molecular motion in cyclomaltoheptaose (β-cyclodextrin) crosslinked with epichlorohydrin. Carbohydr Res. 1998;308:37–45.
  24. Wintgens V, Daoud-Mahammed S, Gref R, Bouteiller L, Amiel C. Aqueous polysaccharide associations mediated by β-cyclodextrin polymers. Biomacromolecules. 2008;9:1434–42.
Bibliographic reference Bouchemal, Kawthar ; Couvreur, Patrick ; Daoud-Mahammed, Samia ; Poupaert, Jacques ; Gref, Ruxandra. A comprehensive study on the inclusion mechanism of benzophenone into supramolecular nanoassemblies prepared using two water-soluble associative polymers. In: Journal of Thermal Analysis and Calorimetry : an international forum for thermal studies, Vol. 98, no. 1, p. 57-64 (2009)
Permanent URL http://hdl.handle.net/2078.1/35199