User menu

At infinity of finite-dimensional CAT(0) spaces

Bibliographic reference Caprace, Pierre-Emmanuel ; Lytchak, Alexander. At infinity of finite-dimensional CAT(0) spaces. In: Mathematische Annalen, Vol. 346, no. 1, p. 1-21 (2010)
Permanent URL
  1. Adams S., Ballmann W.: Amenable isometry groups of Hadamard spaces. Math. Ann. 312(1), 183–195 (1998)
  2. Ballmann, W., Gromov, M., Schroeder, V.: Manifolds of nonpositive curvature. In: Progress in Mathematics, vol. 61, p. 217. Birkhäuser Boston Inc., Boston (1985)
  3. Bridson, M.R., Haefliger, A.: Metric spaces of non-positive curvature. Grundlehren der Mathematischen Wissenschaften 319, Springer, Berlin (1999)
  4. Balser A., Lytchak A.: Centers of convex subsets of buildings. Ann. Global Anal. Geom. 28(2), 201–209 (2005)
  5. Burger M., Schroeder V.: Amenable groups and stabilizers of measures on the boundary of a Hadamard manifold. Math. Ann. 276(3), 505–514 (1987)
  6. Caprace, P.-E.: Amenable groups and Hadamard spaces with a totally disconnected isometry group. Comment. Math. Helv. 84, 437–455 (2009)
  7. Caprace, P.-E., Monod, N.: Isometry groups of nonpositively curved spaces. (2009, preprint)
  8. Dugundji J.: Maps into nerves of closed coverings. Ann. Scuola Norm. Sup. Pisa (3) 21, 121–136 (1967)
  9. Eberlein, P.B.: Geometry of nonpositively curved manifolds. In: Chicago Lectures in Mathematics. University of Chicago Press, Chicago (1996)
  10. Farb, B.: Group actions and Helly’s theorem. (2009, preprint)
  11. Foertsch T., Lytchak A.: The de Rham decomposition theorem for metric spaces. Geom. Funct. Anal. 18(1), 120–143 (2008)
  12. Fujiwara K., Nagano K., Shioya T.: Fixed point sets of parabolic isometries of CAT(0)-spaces. Comment. Math. Helv. 81(2), 305–335 (2006)
  13. Ueber die kleinste Kugel, die eine räumliche Figur einschliesst., 10.1515/crll.1901.123.241
  14. Kleiner B.: The local structure of length spaces with curvature bounded above. Math. Z. 231(3), 409–456 (1999)
  15. Karlsson A., Margulis G.A.: A multiplicative ergodic theorem and nonpositively curved spaces. Comm. Math. Phys. 208(1), 107–123 (1999)
  16. Lang U., Schroeder V.: Jung’s theorem for Alexandrov spaces of curvature bounded above. Ann. Global Anal. Geom. 15, 263–275 (1997)
  17. Lytchak A., Schroeder V.: Affine functions on CAT(κ) spaces. Math. Z. 255, 231–244 (2007)
  18. Lytchak A.: Open map theorem for metric spaces. Algebra i Analiz 17(3), 139–159 (2005)
  19. Lytchak A.: Rigidity of spherical buildings and joins. Geom. Funct. Anal. 15(3), 720–752 (2005)
  20. Mayer Uwe F., Gradient flows on nonpositively curved metric spaces and harmonic maps, 10.4310/cag.1998.v6.n2.a1
  21. Monod N.: Superrigidity for irreducible lattices and geometric splitting. J. Amer. Math. Soc. 19(4), 781–814 (2006)
  22. Šarafutdinov, V.A.: The Pogorelov-Klingenberg theorem for manifolds that are homeomorphic to R n . Sibirsk. Mat. Ž. 18(4), 915–925, 958 (1977)