User menu

Optimization of time-of-flight reconstruction on Philips GEMINI TF

Bibliographic reference Vandenberghe, Stefaan ; VAN ELMBT, Larry ; Guerchaft, Michel ; Clementel, Enrico ; Verhaeghe, Jeroen ; et. al. Optimization of time-of-flight reconstruction on Philips GEMINI TF. In: European Journal of Nuclear Medicine and Molecular Imaging, Vol. 36, no. 12, p. 1994-2001 (2009)
Permanent URL
  1. Campagnolo RE, Garderet P, Vacher J. Tomographie par emeterurs positrons avec mesure de temp de vol. In: Colloque National sur le Traitement du Signal, Nice, France. (1979).
  2. Gariod R, Allemand R, Cormoreche E, Laval M, Moszynski M. The leti positron tomograph architecture and time of flight improvements. In: Proceedings of The Workshop on Time of Flight Tomography, St Louis, USA. (1982).
  3. Yamamoto M, Ficke DC, Ter-Pogossian MM. Experimental assessment of the gain achieved by the utilization of time-of-flight information in a positron emission tomograph (Super PETT I). IEEE Trans Med Imaging 1982;1:187–92.
  4. Budinger TF. Time-of-flight positron emission tomography: status relative to conventional PET. J Nucl Med 1983;24:73–8.
  5. Wong WH. PET camera performance design evaluation for BGO and BaF2 scintillators (non-time-of-flight). J Nucl Med 1988;29:338–47.
  6. Mallon A, Grangeat P. Three-dimensional PET reconstruction with time-of-flight measurement. Phys Med Biol 1992;37:717–29.
  7. Ter-Pogossian MM, Mullani NA, Ficke DC, Markham J, Snyder DL. Photon time-of-flight-assisted positron emission tomography. J Comput Assist Tomogr 1981;5:227–39.
  8. Muehllehner G, Karp JS. Positron emission tomography. Phys Med Biol 2006;51:R117–37.
  9. Lewellen TK. Time-of-flight PET. Semin Nucl Med 1998;28:268–75.
  10. van Eijk CW. Radiation detector developments in medical applications: inorganic scintillators in positron emission tomography. Radiat Prot Dosimetry 2008;129:13–21.
  11. Aykac M, Bauer F, Williams C, Loope M, Schmand M. Timing performance of Hi-Rez detector for time-of-flight (TOF) PET. IEEE Trans Nucl Sci 2006;53:1084–9.
  12. Surti S, Karp JS, Muehllehner G. Image quality assessment of LaBr3-based whole-body 3D PET scanners: a Monte Carlo evaluation. Phys Med Biol 2004;49:4593–610.
  13. Popescu LM, Lewitt RM. Small nodule detectability evaluation using a generalized scan-statistic model. Phys Med Biol 2006;51:6225–44.
  14. Surti S, Karp JS, Popescu LM, Daube-Witherspoon ME, Werner M. Investigation of time-of-flight benefit for fully 3-D PET. IEEE Trans Med Imaging 2006;25:529–38.
  15. Surti S, Kuhn A, Werner ME, Perkins AE, Kolthammer J, Karp JS. Performance of Philips Gemini TF PET/CT scanner with special consideration for its time-of-flight imaging capabilities. J Nucl Med 2007;48:471–80.
  16. Karp JS, Surti S, Daube-Witherspoon ME, Muehllehner G. Benefit of time-of-flight in PET: experimental and clinical results. J Nucl Med 2008;49:462–70.
  17. Conti M, Bendriem B, Casey M, Chen M, Kehren F, Michel C, et al. First experimental results of time-of-flight reconstruction on an LSO PET scanner. Phys Med Biol 2005;50:4507–26.
  18. Mullani NA, Markham J, Ter-Pogossian MM. Feasibility of time-of-flight reconstruction in positron emission tomography. J Nucl Med 1980;21:1095–7.
  19. Defrise M, Casey ME, Michel C, Conti M. Fourier rebinning of time-of-flight PET data. Phys Med Biol 2005;50:2749–63.
  20. Vandenberghe S, Daube-Witherspoon ME, Lewitt RM, Karp JS. Fast reconstruction of 3D time-of-flight PET data by axial rebinning and transverse mashing. Phys Med Biol 2006;51:1603–21.
  21. Parra L, Barrett HH. List-mode likelihood: EM algorithm and image quality estimation demonstrated on 2-D PET. IEEE Trans Med Imaging 1998;17:228–35.
  22. Wang W., Hu Z., Gualtieri E. E., Parma M. J., Walsh E. S., Sebok D., Hsieh Y.-L., Tung C.-H., Song X., Griesmer J. J., Kolthammer J. A., Popescu L. M., Werner M., Karp J. S., Gagnon D., Systematic and Distributed Time-of-Flight List Mode PET Reconstruction, 10.1109/nssmic.2006.354229
  23. Accorsi R, Adam LE, Werner ME, Karp JS. Optimization of a fully 3D single scatter simulation algorithm for 3D PET. Phys Med Biol 2004;49:2577–98.
  24. Werner Matthew E., Surti Suleman, Karp Joel S., Implementation and Evaluation of a 3D PET Single Scatter Simulation with TOF Modeling, 10.1109/nssmic.2006.354238
  25. Watson C. Extension of single scatter simulation to scatter correction of time-of-flight PET. IEEE Nucl Sci Symp Conf Rec 2005;5:2492–6.
  26. Daube-Witherspoon Margaret E., Surti Suleman, Matej Samuel, Werner Matthew, Jayanthi Shridhar, Karp Joel S., Influence of Time-of-Flight Kernel Accuracy in TOF-PET Reconstruction, 10.1109/nssmic.2006.354230
  27. Vandenberghe S, Verhaeghe J, Lemahieu I, Matej S, Daube-Witherspoon M, Karp J, et al. Determining timing resolution from TOF-PET emission data. IEEE Nucl Sci Symp Conf Rec 2007;4:2727–31.