User menu

Transmission electron microscopy study of phase compatibility in low hysteresis shape memory alloys

Bibliographic reference Delville, Remi ; Kasinathan, Sakthivel ; Zhang, Zhiyong ; Van Humbeeck, Jan ; James, Richard D. ; et. al. Transmission electron microscopy study of phase compatibility in low hysteresis shape memory alloys. In: Philosophical Magazine (London, 2003), Vol. 90, no. 1-4, p. 177-195 (2010)
Permanent URL
  1. Cui Jun, Chu Yong S., Famodu Olugbenga O., Furuya Yasubumi, Hattrick-Simpers Jae., James Richard D., Ludwig Alfred, Thienhaus Sigurd, Wuttig Manfred, Zhang Zhiyong, Takeuchi Ichiro, Combinatorial search of thermoelastic shape-memory alloys with extremely small hysteresis width, 10.1038/nmat1593
  2. Ortı́n Jordi, Delaey Lucas, Hysteresis in shape-memory alloys, 10.1016/s0020-7462(02)00027-6
  3. Ball J. M., James R. D., Proposed Experimental Tests of a Theory of Fine Microstructure and the Two-Well Problem, 10.1098/rsta.1992.0013
  4. Ball J. M., James R. D., Fine phase mixtures as minimizers of energy, 10.1007/bf00281246
  5. James RD, Magnetism and Structure in Functional Materials, 79 (2005)
  6. Zhang Z, Acta Mater. (2009)
  7. Schryvers D., Yandouzi M., Holland-Moritz D., Toth L., HRTEM Study of Austenite and Martensite in Splat-Cooled and Nanoscale thin Film Ni-Al, 10.1051/jp4:1997532
  8. Schryvers D., Holland-Moritz D., Austenite and martensite microstructures in splat-cooled NiAl, 10.1016/s0966-9795(97)00091-5
  9. Bhattacharya K, Microstructure of Martensite (2003)
  10. Sun Qing-Ping, Xu Terry Ting, Zhang Xiangyang, On Deformation of A-M Interface in Single Crystal Shape Memory Alloys and Some Related Issues, 10.1115/1.2815997
  11. Hÿtch M.J, Vermaut Ph, Malarria J, Portier R, Study of atomic displacement fields in shape memory alloys by high-resolution electron microscopy, 10.1016/s0921-5093(99)00352-4
  12. Sivokha VP, Phys. Met. Metall., 56, 112 (1983)
  13. Lo Y.C, Wu S.K, Compositional dependence of martensitic transformation sequence in Ti50Ni50 − xPdx alloys with X ≤ 15at%, 10.1016/0956-716x(92)90480-3
  14. Hane Kevin F., Shield Thomas W., 10.1023/a:1011051204615
  15. Lindquist PG, PhD thesis (1988)
  16. Nishida M., Hara T., Morizono Y., Ikeya A., Kijima H., Chiba A., Transmission electron microscopy of twins in martensite in TiPd shape memory alloy, 10.1016/s1359-6454(97)00162-6
  17. Bywater K. A., Christian J. W., Martensitic transformations in titanium-tantalum alloys, 10.1080/14786437208223852
  18. Tadaki T., Wayman C.M., Electron microscopy studies of martensitic transformations in Ti50Ni50 − xCux alloys. Part II. Morphology and crystal structure of martensites, 10.1016/0026-0800(82)90005-2
  19. Saburi T., Komatsu T., Nenno S., Watanabe Y., Electron microscope observation of the early stages of thermoelastic martensitic transformation in a TiNiCu alloy, 10.1016/0022-5088(86)90171-2
  20. Moberly W.J., Proft J.L., Duerig T.W., Sinclair R., Twinless Martensite in TiNiCu Shape Memory Alloys, 10.4028/
  21. Madangopal K., The self accommodating martensitic microstructure of NiTi shape memory alloys, 10.1016/s1359-6454(97)00161-4
  22. Miyazaki S., Otsuka K., Wayman C.M., The shape memory mechanism associated with the martensitic transformation in TiNi alloys—I. Self-accommodation, 10.1016/0001-6160(89)90072-2
  23. Saburi Toshio, Watanabe Youichi, Nenno Soji, Morphological characteristics of the orthorhombic martensite in a shape memory Ti-Ni-Cu alloy., 10.2355/isijinternational.29.405
  24. Delville R, Scripta Mater., 6, 293 (2009)
  25. Boullay Ph., Schryvers D., Ball J.M., Nano-structures at martensite macrotwin interfaces in Ni65Al35, 10.1016/s1359-6454(02)00536-0
  26. Schryvers D., Microtwin sequences in thermoelastic NixAl100-xmartensite studied by conventional and high-resolution transmission electron microscopy, 10.1080/01418619308219383
  27. Hamilton R.F, Sehitoglu H, Chumlyakov Y, Maier H.J, Stress dependence of the hysteresis in single crystal NiTi alloys, 10.1016/j.actamat.2004.03.038