User menu

Schrodinger and Dirac equations for the hydrogen atom, and Laguerre polynomials

Bibliographic reference Mawhin, Jean ; Ronveaux, Andre. Schrodinger and Dirac equations for the hydrogen atom, and Laguerre polynomials. In: Archive for History of Exact Sciences, Vol. 64, no. 4, p. 429-460 (2010)
Permanent URL http://hdl.handle.net/2078.1/34407
  1. Akhieser, N.I. 1998. Function theory according to Chebyshev. In Mathematics of the XIXth century, vol. 3, ed. A.N. Kolmogorov and A.P. Yushkevich, 1–81. Basel: Birkhäuser.
  2. Anonymous. 1952. Dr. F.B. Pidduck. Nature No. 4317. July 26: 141.
  3. Askey, R. 1982. Comments to (Szegö, 1968). In Collected papers of G. Szegö, vol. 3, ed. R. Askey, 866–869. Boston: Birkhäuser.
  4. Auvil P.B., Brown L.M. (1978) The relativistic hydrogen atom: a simple solution. American Journal of Physics 46: 679–681
  5. Bacry H., Boon M. (1985) Lien entre certains polynômes et quelques fonctions transcendantes. Comptes Rendus de l’Academie des Sciences Paris I 301: 273–276
  6. Bernkopf, M. 1991. Laguerre, Edmond Nicolas. In Biographical dictionary of mathematics, vol. 3, ed. C.C. Gillipsie, 1315–1317. New York: Charles Scribner’s Sons.
  7. Bethe, H.A., and E.E. Salpeter. 1957. Quantum mechanics of one- and two-electrons systems. In Handbuch der Physik, vol. 35, ed. S. Flügge, 88–436. Berlin: Springer.
  8. Bloch, F. 1976. Heisenberg and the early days of quantum mechanics. Physics Today. December: 23–27.
  9. Brezinski, C., A. Draux, A.P. Magnus, P. Maroni, and A. Ronveaux, eds. 1985. Polynômes orthogonaux et applications (Bar-le-Duc, 1984). Lecture Notes in Mathematics No. 1171. Berlin: Springer.
  10. Buchholz Herbert, The Confluent Hypergeometric Function, ISBN:9783642883989, 10.1007/978-3-642-88396-5
  11. Chatterji, S.D. 1997–1998. Cours d’analyse, 3 vol. Lausanne: Presses polytechniques et universitaires romandes.
  12. Chebychev, P.L. 1858. Sur les fractions continues. J. Math. Pures Appl. 3 (2): 289–323. Oeuvres. St. Petersburg: Acad. Imp. Sciences. Reprint New York: Chelsea, 1962, vol. 1: 201–230.
  13. Chebyshev, P.L. 1859. Sur le développement des fonctions à une seule variable. Bull. Phys.-Math. Acad. Imp. St. Pétersbourg 1: 193–200. Oeuvres. St. Petersburg: Acad. Imp. Sciences. Reprint New York: Chelsea, vol. 1: 501–508.
  14. Courant R., Hilbert D., Methoden der Mathematischen Physik, ISBN:9783662356159, 10.1007/978-3-662-36445-1
  15. Darwin C.G. (1927) The electron as a vector wave. Proceedings of the Royal Society of London Series A 116: 227–253
  16. Darwin C.G. (1928) The wave equation of the electron. Proceedings of the Royal Society of London Series A 118: 654–680
  17. Davis L. Jr. (1939) A note on the wave equations of the relativistic atom. Physical Review 56: 186–187
  18. de Broglie L. (1923a) Ondes et quanta. Comptes Rendus de l’Academie des Sciences Paris 177: 507–510
  19. de Broglie L. (1923b) Quanta de lumière, diffraction et interférences. Comptes Rendus de l’Academie des Sciences Paris 177: 548–550
  20. de Broglie L. (1923c) Les quanta, la théorie cinétique des gaz et le principe de Fermat. Comptes Rendus de l’Academie des Sciences Paris 177: 630–632
  21. de Broglie L. (1934) L’électron magnétique (Théorie de Dirac). Hermann, Paris
  22. Dehesa, J.S., F. Dominguez Adame, E.R. Arriola, and A. Zarzo. 1991. Hydrogen atom and orthogonal polynomials. In Orthogonal polynomials and their applications (Erice, 1990). IMACS Annals Computing and Applied Mathematics, vol. 9, 223–229. Basel: Baltzer.
  23. Dieudonné, J. 1985. Fractions continuées et polynomes orthogonaux dans l’oeuvre de E.N. Laguerre. In Polynômes orthogonaux et applications (Bar-le-Duc, 1984). Lecture Notes in Mathematics No. 1171, 1–15. Berlin: Springer.
  24. Dirac P.A.M. (1928) The quantum theory of the electron I. Proceedings of the Royal Society of London A 117: 610–624
  25. Dirac P.A.M. (1930) The principles of quantum mechanics. Clarendon Press, Oxford
  26. Durán J., Grünbaum F.A. (2004) Orthogonal matrix polynomials satisfying second-order differential equations. International Mathematics Research Notices 10: 461–484
  27. Durán J., Grünbaum F.A. (2006) P A M Dirac meets M G Krein: matrix orthogonal polynomials and Dirac’s equation. Journal of Physics A: Mathematical and General 39: 3655–3662
  28. Erdélyi A., Magnus W., Oberhettinger F., Tricomi F.G. (1953) Higher transcendental functions, 3 vol. McGraw-Hill, New York
  29. Favard, J. 1960–1963. Cours d’analyse de l’École Polytechnique, 3 vol. Paris: Gauthier-Villars.
  30. Fejér, L. 1908. Sur une méthode de M. Darboux. Comptes Rendus de l’Académie des sciences Paris 147: 1040–1042. Leopold Fejér Gesammelte Arbeiten, vol. I, ed. P. Turán, 444–445. Basel: Birkhäuser.
  31. Fejér, L. 1909. On the determination of asymptotic values (Hungarian). Mat. és Term. Értesitó 27: 1–33. German translation in Leopold Fejér Gesammelte Arbeiten, vol. I. Basel-Birkhäuser, 1970: 474–502.
  32. Feynman R.P., Leighton R.B., Sands M. (1966) The Feynman lectures on physics. Quantum mechanics. Addison Wesley, Boston
  33. Frank, Ph., and R. von Mises. 1925–1935. Die Differential- und Integralgleichungen der Mechanik und Physik. Braunschweig: Vieweg. Vol. 1, 1st ed. Vol. 1, 1925. Vol. 2 1928. 2nd Vol. 1, 1930. Vol. 2, 1935.
  34. Gautschi, W. 1981. A survey of Gauss-Christoffel quadrature formula. In E.B. Christoffel. The influence of his work on mathematics and the physical sciences, ed. P.L. Butzer and F. Fehér, 72–147. Basel: Birkhäuser.
  35. Gerber J. (1969) Geschichte der Wellenmechanik. Archive for History of Exact Sciences 5: 349–416
  36. Gordon W. (1928) Die Energieniveaus der Wassenstoffatoms nach der Diracschen Quantentheorie des Elektrons. Z. f. Phys. 48: 11–14
  37. Goursat, É. 1910–1915. Cours d’analyse mathématique, 3 vol. Paris: Gauthier-Villars.
  38. Hadamard, J. 1927–1930. Cours d’analyse de l’École Polytechnique, 2 vol. Paris: Hermann.
  39. Hendriksen, E., and H. van Rossum. 1985. Semi-classical orthogonal polynomials. In Orthogonal polynomials and applications (Bar-le-Duc 1984). Lecture Notes in Mathematics No. 1171, 354–361. Berlin: Springer.
  40. Henrici, P. 1974–1986. Applied and computational complex analysis, 3 vol. New York: Wiley-Interscience.
  41. Hermite, Ch., H. Poincaré, É. and Rouché, eds. 1898–1905. Oeuvres de Laguerre, 2 vol. Paris: Gauthier-Villars. Reprinted New York: Chelsea, 1972.
  42. Hill E.L., Landshoff R. (1938) The Dirac electron theory. Reviews of Modern Physics 10: 87–132
  43. Hille, E., J. Shohat, and J.L. Walsh. 1940. A bibliography of orthogonal polynomials. Bulletin of the National Research Council No. 103. Washington, DC.
  44. Humbert P. (1922) Monographie des polynômes de Kummer. Ann. de Math. 1(5): 81–92
  45. Ince, E.L.(1927). Ordinary differential equations. London: Longmans. Reprint New York: Dover, 1958.
  46. Ivory J., Jacobi C.G.J. (1837) Sur le développement de $${(1-2xz+z^2)^{-1/2}}$$ . J. Math. Pures Appl. 2: 105–106
  47. Jammer M. (1966) The conceptual development of quantum mechanics. Mc-Graw-Hill, New York
  48. Jordan, C. 1887. Cours d’analyse de l’École Polytechnique. 3 vol. Paris: Gauthier-Villars. 2e éd, 1893.
  49. Kragh H.S. (1981) The genesis of Dirac’s relativistic theory of electrons. Archive for History of Exact Sciences 24: 31–67
  50. Kragh H.S. (1982) Erwin Schrödinger and the wave equation: the crucial phase. Centaurus 26: 154–197
  51. Kragh H.S. (1990) Dirac. A scientific biography. Cambridge University Press, Cambridge
  52. Krein M.G. (1949) Infinite j-matrices and a matrix moment problem (Russian). Doklady Akademii Nauk SSSR 69: 125–128
  53. Kubli F. (1970) Louis de Broglie und die Entdeckung der Materiewellen. Archive for History of Exact Sciences 7: 26–68
  54. Kummer E.E. (1836) Ueber die hypergeometrische Reihe F(α,β,γ). Journal für reine Und angewandte Mathematik 15(39–83): 127–172
  55. Lagrange, J.L. 1762. Solution de différents problèmes de calcul intégral. Miscellanea Taurinensia 3 (1762–1765). Oeuvres, vol. 1, 471–668. Paris: Gauthier-Villars.
  56. Laguerre, E.N. (1879a). Sur l’intégrale $${\int_{x}^\infty\frac{e^{-x}\,dx}{x}}$$ . Bull. Soc. Math. France 7: 428–437. Oeuvres, vol. I, 428–437.
  57. Laguerre, E.N. 1879b. Sur la réduction en fractions continues d’une fonction qui satisfait à une équation linéaire du premier ordre à coefficients rationnels. Bull. Soc. Math. France 8: 21–27. Oeuvres, vol. I, 438–444.
  58. Laguerre, E.N. 1884. Sur la réduction en fractions continues d’une fraction qui satisfait à une équation linéaire du premier ordre à coefficients rationnels. Comptes Rendus de l’Academie des Sciences Paris 98: 209–212. Oeuvres, vol. I, 445–448.
  59. Laguerre, E.N. 1885. Sur la réduction des fractions continues d’une fraction qui satisfait à une équation différentielle linéaire du premier ordre dont les coefficients sont rationnels. J. Math. Pures Appl. 1 (4): 135–165. Oeuvres, vol. II, 685–711.
  60. Landau L., Lifchitz E. (1972) Théorie quantique relativiste. Première partie. Mir, Moscou
  61. Laurent, H. 1885–1991. Traité d’analyse, 7 vol. Paris: Gauthier-Villars.
  62. Lavrentiev M., Shabat B. (1977) Méthodes de la théorie des fonctions d’une variable complexe. Mir, Moscou
  63. Lebedev N.N. (1965). Special functions and their applications. Prentice-Hall. Reprint New York: Dover, 1972.
  64. Mehra J., Rechenberg H. (1987) The historical development of quantum theory. Vol. 5: Erwin Schrödinger and the rise of wave mechanics, 2 vol. Springer, New York
  65. Milne A. (1915) On the roots of the confluent hypergeometric equation. Proceedings of the Edinburgh Mathematical Society 33: 48–64
  66. Moore Walter J., Schrödinger : Life and Thought, ISBN:9780511600012, 10.1017/cbo9780511600012
  67. Murphy, R. 1833–1835. On the inverse method of definite integrals, with physical applications. Transactions of the Cambridge Philosophical Society 4: 355–408; 5: 13–148, 315–393.
  68. Nikiforov A., Ouvarov V. (1976) Éléments de la théorie des fonctions spéciales. Mir, Moscou
  69. Nikiforov Arnold F., Uvarov Vasilii B., Special Functions of Mathematical Physics, ISBN:9781475715972, 10.1007/978-1-4757-1595-8
  70. Pauli W. (1927) Zur Quantenmechanik des magnetischen Elektrons. Z. f. Physik 43: 601–623
  71. Perron, O. 1929. Die Lehre von den Kettenbrücken, 2nd ed. Leipzig: Teubner. Reprint New York: Chelsea.
  72. Picard, É. 1891–1897. Traité d’analyse, 3 vol. Paris: Gauthier-Villars.
  73. Pidduck F.D. (1910) On the propagation of a disturbance in a fluid under gravity. Proceedings of the Royal Society of London A 83: 347–356
  74. Pidduck F.D. (1929) Laguerre polynomials in quantum mechanics. Journal of the London Mathematical Society 4(1): 163–166
  75. Pollaczek, F. 1956. Sur une généralisation des polynômes de Jacobi. Mémorial des sciences mathématiques No. 131. Paris: Gauthier-Villars.
  76. Rainville E.O. (1960) Special functions. McMillan, New York
  77. Rechenberg H. (1988) Erwin Schrödinger and the creation of wave mechanics. Acta Physica Polonica B19: 683–695
  78. Ronveaux A., Mawhin J. (2005) Rediscovering the contributions of Rodrigues on the representation of special functions. Expositiones Mathematicae 23: 361–369
  79. Rose M.E. (1961) Relativistic electron theory. Wiley, New York
  80. Rouché É. (1886) Edmond Laguerre, sa vie et ses travaux. Journal de l’École Polytechnique 56: 213–271
  81. Schiff L.I. (1968) Quantum mechanics, 3rd ed. McGraw-Hill, New York
  82. Schlesinger, L. 1900. Einführung in die Theorie der Differentialgleichungen mit einer unabhängigen Variabeln. Sammlung Schuber No. XIII, G.J. Göschensche Verlag.
  83. Schrödinger E. (1926a) Quantisierung als Eigenwertproblem. (Erste Mitteilung). Annalen der Physik 79(4): 361–376
  84. Schrödinger E. (1926b) Quantisierung als Eigenwertproblem. (Zweite Mitteilung). Annalen der Physik 79(4): 489–527
  85. Schrödinger E. (1926c) Quantisierung als Eigenwertproblem. (Dritte Mitteilung: Störungstheorie, mit Anwendung auf den Starkeeffekt der Balmerlinien). Annalen der Physik 80(4): 437–490
  86. Schrödinger, E. 1927. Abhandlungen zur Wellenmechanik. Leipzig: Barth. English translation Collected papers on wave mechanics. London: Blackie & Son, 1928. French translation Mémoires sur la mécanique ondulatoire. Paris: Félix Alcan, 1933.
  87. Slater L.J. (1960) Confluent hypergeometric functions. Cambridge University Press, Cambridge
  88. Smirnov V. (1969–1984) Cours de mathématiques supérieures, 4 vol. Mir, Moscou
  89. Sokhotskii, Yu.W. 1873. On definite integrals and functions used in series expansions (Russian). PhD thesis, St. Petersburg.
  90. Sommerfeld A., Runge J. (1911) Anwendung der Vektorrechnung auf die Grundlagen der geometrischen Optik. Ann. f. Phys. 35(4): 277–298
  91. Sonine N. (1880) Recherches sur les fonctions cylindriques et le développement des fonctions continues en séries. Math. Ann. 16: 1–80
  92. Steffens K.G. (2006) The history of approximation theory. From Euler to Bernstein. Birkhäuser, Basel
  93. Sylow, L., Lie, S. (eds) (1881) Oeuvres complètes de Niels Hendrik Abel, 2 vol. Christiana, Grondhal & Son
  94. Szegö G. (1959) Orthogonal polynomials, 2nd ed. Providence, American Mathematical Society
  95. Szegö G. 1968. An outline of the history of orthogonal polynomials. In Proceedings of the conference on orthogonal expansions and their continuous analogues, 3–11. Carbondale: Southern Illinois University Press. Collected Papers. Vol. 3, 1982: 857–865.
  96. Turán, P. 1970. Bemerkungen. In Leopold Fejér Gesammelte Arbeiten, vol. I, ed. P. Turán, 502–503. Basel: Birkhäuser.
  97. Valiron, G. 1942–1945. Cours d’analyse mathématique, 2 vol. Paris: Masson.
  98. Weber, H. 1900–1901. Die partiellen Differential-Gleichungen der Mathematischen Physik, 2 vol. Braunschweig: Vieweg.
  99. Wessels L. (1979) Schrödinger’s route to wave mechanics. Studies in History and Philosophy of Science 10: 311–340
  100. Weyl, H. 1928. Gruppentheorie und Quantenmechanik. Leipzig: Hirzel. English transl. London: Methuen, 1931. Reprint New York: Dover.
  101. Whittaker E., Watson N. (1902) Modern analysis. Cambridge University Press, Cambridge