Sorjamaa, Antti
Lendasse, Amaury
Cornet, Yves
Deleersnijder, Eric
[UCL]
In this paper, an improved methodology for the determination of missing values in a spatiotemporal database is presented. This methodology performs denoising projection in order to accurately fill the missing values in the database. The improved methodology is called empirical orthogonal functions (EOF) pruning, and it is based on an original linear projection method called empirical orthogonal functions (EOF). The experiments demonstrate the performance of the improved methodology and present a comparison with the original EOF and with a widely used optimal interpolation method called objective analysis.
- Tangang, F.T., Tang, B., Monahan, A.H., Hsieh, W.W.: Forecasting enso events: a neural network—extended eof approach. J. Climate 11, 29–41 (1998)
- Wackernagel Hans, Multivariate Geostatistics, ISBN:9783662031001, 10.1007/978-3-662-03098-1
- Preisendorfer, R.: Principal Component Analysis in Meteorology and Oceanography. Elsevier, Amsterdam (1988)
- Beckers, J.M., Rixen, M.: Eof calculations and data filling from incomplete oceanographic datasets. J. Atmos. Ocean. Technol. 20(12), 1839–1856 (2003)
- Boyd, J., Kennelly, E., Pistek, P.: Estimation of eof expansion coefficients from incomplete data. Deep Sea Res. 41, 1479–1488 (1994)
- Alvera-Azcarate, A., Barth, A., Rixen, M., Beckers, J.M.: Reconstruction of incomplete oceanographic data sets using empirical orthogonal functions. Application to the adriatic sea. Ocean Model. 9, 325–346 (2005)
- Alvera-Azcarate, A., Barth, A., Beckers, J.M., Weisberg, R.H.: Multivariate reconstruction of missing data in sea surface temperature, chlorophyll and wind satellite fields. J. Geophys. Res. 112, C03008 (2007)
- Beckers, J.-M., Barth, A., Alvera-Azcarate, A.: Dineof reconstruction of clouded images including error maps. Application to the sea surface temperature around Corsican Island. Ocean Sci. 2(2), 183–199 (2006)
- Lendasse, A., Wertz, V., Verleysen, M.: Model selection with cross-validations and bootstraps—application to time series prediction with rbfn models. In: LNCS, no. 2714, pp. 573–580. Springer, Berlin (2003)
- Kohavi, R.: A study of cross-validation and bootstrap for accuracy estimation and model selection. In: Proceedings of the 14th International Joint Conference on Artificial Intelligence, vol. 2, Montreal, 20–25 August 1995
- Efron Bradley, Tibshirani Robert J., An Introduction to the Bootstrap, ISBN:9780412042317, 10.1007/978-1-4899-4541-9
- Efron, B., Tibshirani, R.J.: Improvements on cross-validation: the .632+ bootstrap method. J. Am. Stat. Assoc. 92, 548–560 (1997)
- Sorjamaa, A., Hao, J., Reyhani, N., Ji, Y., Lendasse, A.: Methodology for long-term prediction of time series. Neurocomputing 70(16–18), 2861–2869 (2007)
- Gandin, L.S.: Objective Analysis of Meteorological Fields, p. 242. Israel Program for Scientific Translations, Jerusalem (1969)
Bibliographic reference |
Sorjamaa, Antti ; Lendasse, Amaury ; Cornet, Yves ; Deleersnijder, Eric. An improved methodology for filling missing values in spatiotemporal climate data set. In: Computational Geosciences : modeling, simulation and data analysis, Vol. 14, no. 1, p. 55-64 (2010) |
Permanent URL |
http://hdl.handle.net/2078.1/34271 |