User menu

Rank-One Isometries of Buildings and Quasi-Morphisms of Kac-Moody Groups

Bibliographic reference Caprace, Pierre-Emmanuel ; Fujiwara, Koji. Rank-One Isometries of Buildings and Quasi-Morphisms of Kac-Moody Groups. In: Geometric and Functional Analysis, Vol. 19, no. 5, p. 1296-1319 (2010)
Permanent URL
  1. P. Abramenko, K.S. Brown, Buildings, Theory and Applications, Springer Graduate Texts in Mathematics 248, (2008).
  2. Alperin Roger, Locally compact groups acting on trees, 10.2140/pjm.1982.100.23
  3. W. Ballmann (appendix by M. Brin), Lectures on Spaces of Nonpositive Curvature, DMV Seminar 25, Birkhäuser Verlag, Basel (1995),
  4. W. Ballmann, M. Brin, Orbihedra of nonpositive curvature, Inst. Hautes Etudes Sci. Publ. Math. 82 (1995), 169–209 (1996).
  5. Bavard C.: Longueur stable des commutateurs. Enseign. Math. IIe Série 37, 109–150 (1991)
  6. M. Bestvina, M. Feighn, A hyperbolic Out(F n )-complex, preprint, (2008); arXiv:0808.3730
  7. Bestvina M., Fujiwara K.: Bounded cohomology of subgroups of mapping class groups. Geom. Topol. 6, 69–89 (2002) (electronic)
  8. Bestvina M., Fujiwara K.: A characterization of higher rank symmetric spaces via bounded cohomology. Geom. Funct. Anal. 19(1), 11–40 (2009)
  9. N. Bourbaki, Éléments de mathématique. Topologie générale. Chapitres 1 à 4, Hermann, Paris, 1971.
  10. B.H. Bowditch, Relatively hyperbolic groups, preprint, University of Southampton (1999).
  11. Bridson Martin R., Haefliger André, Metric Spaces of Non-Positive Curvature, ISBN:9783642083990, 10.1007/978-3-662-12494-9
  12. M. Burger, A. Iozzi, A. Wienhard, Surface group representations with maximal Toledo invariant, Ann. Math., to appear.
  13. Burger M., Monod N.: Continuous bounded cohomology and applications to rigidity theory. Geom. Funct. Anal. 12(2), 219–280 (2002)
  14. Burger M., Mozes S.: CAT(−1)-spaces, divergence groups and their commensurators. J. Amer. Math. Soc. 9, 57–93 (1996)
  15. D. Calegari, scl, Monograph, Japanese Math Society, to appear;
  16. P.-E. Caprace, Buildings with isolated subspaces and relatively hyperbolic Coxeter groups, Innov. Incidence Geom., to appear; arXiv:math.GR/0703799
  17. Caprace P.-E.: Amenable groups and Hadamard spaces with a totally disconnected isometry group. Comment. Math. Helv. 84, 437–455 (2009)
  18. Caprace P.-E., Haglund F.: On geometric flats in the CAT(0) realization of Coxeter groups and Tits buildings. Canad. J. Math. 61, 740–761 (2009)
  19. P.-E. Caprace, N. Monod, Isometry groups of non-positively curved spaces: structure theory, J. Topology, to appear; arXiv:math.GR/0809.0457
  20. Caprace P.-E., Mühlherr B.: Isomorphisms of Kac-Moody groups which preserve bounded subgroups. Adv. Math. 206(1), 250–278 (2006)
  21. Caprace P.-E., Rémy B.: Simplicity and superrigidity of Kac-Moody lattices. Invent. Math. 176, 169–221 (2009)
  22. M.W. Davis, Buildings are CAT(0), Geometry and Cohomology in Group Theory, London Math. Soc. Lecture Note Ser., Cambridge Univ. Press (1998), 108–123.
  23. Epstein D.B.A., Fujiwara K.: The second bounded cohomology of wordhyperbolic groups. Topology 36(6), 1275–1289 (1997)
  24. U. Hamenstädt, Bounded cohomology and cross ratios, in “Limits of Graphs in Group Theory and Computer Science”, EPFL Lausanne Press, to appear; arXiv:math.GR/0508532
  25. Hamenstädt U.: Isometry groups of proper hyperbolic spaces. Geom. Funct. Anal. 19(1), 170–205 (2009)
  26. U. Hamenstädt, Subgroups of Out(F n ), Talk at the conference ”Discrete Groups and Geometric Structures” held in Kortrijk, May 2008.
  27. Hartman S., Ryll-Nardzewski C.: Zur Theorie der lokal-kompakten Abelschen Gruppen. Colloq. Math. 4, 157–188 (1956)
  28. Kaplansky I.: Infinite abelian groups. University of Michigan Press, Ann Arbor (1954)
  29. Koubi Malik, Croissance uniforme dans les groupes hyperboliques, 10.5802/aif.1661
  30. Krammer D.: The conjugacy problem for Coxeter groups. Groups Geom. Dyn. 3(1), 71–171 (2009)
  31. V.D. Mazurov, E.I. Khukhro (eds.), The Kourovka Notebook, Unsolved problems in group theory, augmented ed., Russian Academy of Sciences Siberian Division Institute of Mathematics, Novosibirsk, 1999,
  32. N. Monod, B. Rémy, Boundedly generated groups with pseudocharacter(s), J. in London Math. Soc. (2) 73:1 (2006), 84–108; appendix to “Quasi-actions on Trees and Property (QFA) by J.F. Manning.
  33. Montgomery D., Zippin L.: Topological Transformation Groups. Interscience Publishers, New York-London (1955)
  34. G. Moussong, Hyperbolic coxeter groups, PhD Thesis, Ohio State University, 1988.
  35. Muranov A.: Finitely generated infinite simple groups of infinite commutator width. Internat. J. Algebra Comput. 17(3), 607–659 (2007)
  36. Mycielski J.: Some properties of connected compact groups. Colloq. Math. 5, 162–166 (1957)
  37. Paris L.: Irreducible Coxeter groups. Internat. J. Algebra Comput. 17, 427–447 (2007)
  38. Prasad G.: Strong approximation for semi-simple groups over function fields. Ann. of Math. (2) 105(3), 553–572 (1977)
  39. B. Rémy, Groupes de Kac–Moody déployés et presque déployés, Astérisque 277 (2002).
  40. J.-P. Serre, Cohomologie galoisienne, fifth ed., Springer Lecture Notes in Mathematics 5 (1994).
  41. Shalom Y.: Rigidity of commensurators and irreducible lattices. Invent. Math. 141, 1–54 (2000)
  42. Tits J.: Le problème des mots dans les groupes de Coxeter, Symposia Mathematica (INDAM, Rome, 1967/68) Vol 1, pp. 175–185. Academic Press, London (1969)
  43. Tits J.: Uniqueness and presentation of Kac-Moody groups over fields. J. Algebra 105, 542–573 (1987)
  44. J. Tits, Twin buildings and groups of Kac-Moody type, Lecture Notes of the London Mathematical Society (Durham, 2000), London Mathematical Society (1992), 249–286.
  45. Weiss R.M.: The Structure of Spherical Buildings. Princeton University Press, Princeton (2003)