User menu

A New Model for Void Coalescence by Internal Necking

Bibliographic reference Scheyvaerts, Florence ; Pardoen, Thomas ; Onck, P. R.. A New Model for Void Coalescence by Internal Necking. In: International Journal of Damage Mechanics, Vol. 19, no. 1, p. 95-126 (2010)
Permanent URL
  1. ABAQUS/Standard version 6.5. User’s Manual (2004)
  2. Becker R., The effect of porosity distribution on ductile failure, 10.1016/0022-5096(87)90018-4
  3. Becker R., Needleman A., Richmond O., Tvergaard V., Void growth and failure in notched bars, 10.1016/0022-5096(88)90014-2
  4. Becker, R., Trans. A, 20, 853 (1989)
  5. Benzerga, A.A., Rupture Ductile Des Tôles Anisotropes: Simulation de la Propagation Longitudinale Dans un tube Pressurisé (2000)
  6. Benzerga A, Micromechanics of coalescence in ductile fracture, 10.1016/s0022-5096(01)00125-9
  7. Benzerga A. A., Besson J., Pineau A., Coalescence-Controlled Anisotropic Ductile Fracture, 10.1115/1.2812369
  8. Benzerga, A.A., Mater., 52, 4623 (2004)
  9. Benzerga, A.A., Mater., 52, 4639 (2004)
  10. Besson J., Steglich D., Brocks W., Modeling of plane strain ductile rupture, 10.1016/s0749-6419(02)00022-0
  11. Brocks W., Sun D.-Z., Hönig A., Verification of the transferability of micromechanical parameters by cell model calculations with visco-plastic materials, 10.1016/s0749-6419(95)00039-9
  12. Brown, L.M., Proceedings of the Third International Conference on the Strength of Metals and Alloys
  13. Enakoutsa, K., Proceedings of the 11th International Conference on Fracture (2005)
  14. d’Escatha, Y. and Devaux, J.C. ( 1979). In: Landes, J.D., Begley, J.A. and Clarke, G.A. (eds), Elastic-Plastic Fracture. American Society for Testing and Materials, Philadelphia, pp. 229-248 (ASTM STP 668).
  15. Fabrègue D., Pardoen T., A constitutive model for elastoplastic solids containing primary and secondary voids, 10.1016/j.jmps.2007.07.008
  16. Gao, X., Int. J. Fract., 89, 374 (1998)
  17. Gologanu Mihai, Leblond Jean-Baptiste, Perrin Gilles, Devaux Josette, Theoretical models for void coalescence in porous ductile solids. I. Coalescence “in layers”, 10.1016/s0020-7683(00)00354-1
  18. Gologanu M., Leblond J.-B., Perrin G., Devaux J., Recent Extensions of Gurson’s Model for Porous Ductile Metals, Continuum Micromechanics (1997) ISBN:9783211829028 p.61-130, 10.1007/978-3-7091-2662-2_2
  19. Gologanu Mihai, Leblond Jean-Baptiste, Devaux Josette, Approximate Models for Ductile Metals Containing Nonspherical Voids—Case of Axisymmetric Oblate Ellipsoidal Cavities, 10.1115/1.2904290
  20. Gologanu Mihai, Leblond Jean-Baptiste, Devaux Josette, Approximate models for ductile metals containing non-spherical voids—Case of axisymmetric prolate ellipsoidal cavities, 10.1016/0022-5096(93)90029-f
  21. Gullerud Arne S., Gao Xiaosheng, Dodds Robert H., Haj-Ali R., Simulation of ductile crack growth using computational cells: numerical aspects, 10.1016/s0013-7944(99)00147-2
  22. Gurson A. L., Continuum Theory of Ductile Rupture by Void Nucleation and Growth: Part I—Yield Criteria and Flow Rules for Porous Ductile Media, 10.1115/1.3443401
  23. Huber, G., Mater, 53, 2739 (2005)
  24. Hom Craig L., McMeeking Robert M., Three-dimensional void growth before a blunting crack tip, 10.1016/0022-5096(89)90006-9
  25. Koplik J., Needleman A., Void growth and coalescence in porous plastic solids, 10.1016/0020-7683(88)90051-0
  26. Lassance, D., Mater. Sci., 52, 62 (2007)
  27. Lassance, D., Mech, 73, 1009 (2006)
  28. Leblond J.B., Perrin G., Suquet P., Exact results and approximate models for porous viscoplastic solids, 10.1016/0749-6419(94)90001-9
  29. Leblond, J.-B., J. Mech. A/Solids, 14, 499 (1995)
  30. Marino B., Mudry F., Pineau A., Experimental study of cavity growth in ductile rupture, 10.1016/0013-7944(85)90038-4
  31. McClintock, F.A., J. Appl. Mech., 35, 353 (1968)
  32. McClintock FrankA., Local criteria for ductile fracture, 10.1007/bf00188939
  33. McClintock, F.A. ( 1971). Fracture - an Advanced Treatise, In: Liebowitz, H. (ed.), Academic Press, New York, Vol. 3, pp. 47-225.
  34. Mear, M., Mater, 4, 395 (1985)
  35. Mudry, F., Etude de la Rupture Ductile et de la Rupture par Clivage d’aciers Faiblement Allies (1982)
  36. Needleman A., Tvergaard V., An analysis of ductile rupture in notched bars, 10.1016/0022-5096(84)90031-0
  37. Pardoen T., Doghri I., Delannay F., Experimental and numerical comparison of void growth models and void coalescence criteria for the prediction of ductile fracture in copper bars, 10.1016/s1359-6454(97)00247-4
  38. Pardoen T., Delannay F., Assessment of void growth models from porosity measurements in cold-drawn copper bars, 10.1007/s11661-998-0014-4
  39. Pardoen, Delannay, THE COALESCENCE OF VOIDS IN PRESTRAINED NOTCHED ROUND COPPER BARS, 10.1046/j.1460-2695.1998.00123.x
  40. Pardoen T, Hutchinson J.W, An extended model for void growth and coalescence, 10.1016/s0022-5096(00)00019-3
  41. Pardoen, T., Mater., 51, 133 (2003)
  42. Pardoen T., Dumont D., Deschamps A., Brechet Y., Grain boundary versus transgranular ductile failure, 10.1016/s0022-5096(02)00102-3
  43. Pardoen T., Hachez F., Marchioni B., Blyth P.H., Atkins A.G., Mode I fracture of sheet metal, 10.1016/s0022-5096(03)00087-5
  44. Pardoen T., Numerical simulation of low stress triaxiality ductile fracture, 10.1016/j.compstruc.2006.05.001
  45. Pardoen, T., Failure Mechanisms of Metals, Comprehensive Structural Integrity Encyclopedia, Elsevier, Volume 2, Chapter 6 (2007)
  46. Perrin Gilles, Leblond Jean-Baptiste, Accelerated void growth in porous ductile solids containing two populations of cavities, 10.1016/s0749-6419(99)00049-2
  47. Ragab, A.R., Mech, 71, 1515 (2004)
  48. Richelsen A.B., Tvergaard V., Dilatant plasticity or upper bound estimates for porous ductile solids, 10.1016/0956-7151(94)90198-8
  49. Ruggieri C., Panontin T. L., Dodds R. H., Numerical modeling of ductile crack growth in 3-D using computational cell elements, 10.1007/bf00017864
  50. Scheyvaerts, F., J. Mech. Phys. Solids. (2009)
  51. Steglich, D., Mater. Sci., 9, 7 (1997)
  52. Thomason, P.F., J. Institute. Metals, 96, 360 (1968)
  53. Thomason, P.F., Ductile Fracture of Metals (1990)
  54. Thomson C.I.A, Worswick M.J, Pilkey A.K, Lloyd D.J, Void coalescence within periodic clusters of particles, 10.1016/s0022-5096(02)00055-8
  55. Tvergaard Viggo, Influence of voids on shear band instabilities under plane strain conditions, 10.1007/bf00036191
  56. Tvergaard, V., Metall, 32, 157 (1984)
  57. Tvergaard Viggo, Material Failure by Void Growth to Coalescence, Advances in Applied Mechanics (1989) ISBN:9780120020270 p.83-151, 10.1016/s0065-2156(08)70195-9
  58. Tvergaard, V., Mech., 20, 186 (1997)
  59. Weck A., Wilkinson D.S., Maire E., Toda H., Visualization by X-ray tomography of void growth and coalescence leading to fracture in model materials, 10.1016/j.actamat.2008.02.027
  60. Worswick, M.J., Mater., 49, 2791 (2001)
  61. Xia L, Ductile crack growth-I. A numerical study using computational cells with microstructurally-based length scales, 10.1016/0022-5096(94)00064-c
  62. Xia L, Ductile crack growth—II. Void nucleation and geometry effects on macroscopic fracture behavior, 10.1016/0022-5096(95)00063-o
  63. Xia L, A computational approach to ductile crack growth under large scale yielding conditions, 10.1016/0022-5096(94)00069-h
  64. Xia Lin, Shih C.Fong, Ductile crack growth—III. Transition to cleavage fracture incorporating statistics, 10.1016/0022-5096(95)00086-0
  65. Zhang Z. L., Niemi E., A new failure criterion for the Gurson-Tvergaard dilational constitutive model, 10.1007/bf00032450