User menu

Isometry groups of non-positively curved spaces: discrete subgroups

Bibliographic reference Caprace, Pierre-Emmanuel ; Monod, Nicolas. Isometry groups of non-positively curved spaces: discrete subgroups. In: Journal of Topology, Vol. 2, no. 4, p. 701-746 (2009)
Permanent URL http://hdl.handle.net/2078.1/34218
  1. A'Campo Norbert, Burger Marc, R�seaux arithm�tiques et commensurateur d'apr�s G.A. Margulis, 10.1007/bf01231555
  2. Adams, Amenable isometry groups of Hadamard spaces, 183 (1998)
  3. Arzhantseva G., Minasyan A., Osin D., The SQ-universality and residual properties of relatively hyperbolic groups, 10.1016/j.jalgebra.2007.04.029
  4. Bader Uri, Shalom Yehuda, Factor and normal subgroup theorems for lattices in products of groups, 10.1007/s00222-005-0469-5
  5. W. Ballmann Lectures on spaces of nonpositive curvature DMV Seminar 25 (Birkhäuser, Basel, 1995), with an Appendix by Misha Brin
  6. Bangert V., Schroeder V., Existence of flat tori in analytic manifolds of nonpositive curvature, 10.24033/asens.1638
  7. A. Barnhill A. Thomas Density of commensurators for right-angled buildings Preprint, 2008, arXiv:0812.2280
  8. H. Bass A. Lubotzky L. Bass G. Carbone, Lubotzky Rosenberg J. Tits Tree lattices Progress in Mathematics 176 (Birkhäuser Boston Inc., Boston, MA, 2001)
  9. Benakli Nadia, Glasner Yair, 10.1023/a:1014290316936
  10. Bernik Janez, Guralnick Robert, Mastnak Mitja, Reduction theorems for groups of matrices, 10.1016/j.laa.2003.11.020
  11. Bonvin, Geom. Funct. Anal. Topological simplicity, commensurator super-rigidity and non-linearities of Kac-Moody groups, 14, 843 (2004)
  12. Borel Armand, Density Properties for Certain Subgroups of Semi-Simple Groups Without Compact Components, 10.2307/1970150
  13. Borel, J. Reine Angew. Math., 224, 78 (1966)
  14. Borel Armand, Tits Jacques, Homomorphismes "Abstraits" de Groupes Algebriques Simples, 10.2307/1970833
  15. Bourbaki, Chap. 4, 1143 (1960)
  16. N. Bourbaki Éléments de mathématique. Topologie générale Chapitres 1 à 4 (Hermann, Paris, 1971)
  17. Breuillard Emmanuel, Gelander Tsachik, A topological Tits alternative, 10.4007/annals.2007.166.427
  18. M. R. Bridson A. Haefliger Metric spaces of non-positive curvature 1999 319 Berlin Springer Grundlehren der Mathematischen Wissenschaften
  19. Burger, Rigidity properties of group actions on CAT(0)-spaces, 761
  20. Burger M., Monod N., Continuous bounded cohomology and applications to rigidity theory, 10.1007/s00039-002-8245-9
  21. Burger Marc, Mozes Shahar, Groups acting on trees: From local to global structure, 10.1007/bf02698915
  22. Burger Marc, Mozes Shahar, Lattices in product of trees, 10.1007/bf02698916
  23. M. Burger S. Mozes R. J. Zimmer Linear representations and arithmeticity for lattices in products of trees FIM Preprint, 2004
  24. Burger M., Schroeder V., Amenable groups and stabilizers of measures on the boundary of a Hadamard manifold, 10.1007/bf01450845
  25. Cannon, Enseign. Math., 42, 215 (1996)
  26. Caprace Pierre-Emmanuel, Amenable groups and Hadamard spaces with a totally disconnected isometry group, 10.4171/cmh/168
  27. P.-E. Caprace N. Monod A lattice in more than two Kac-Moody groups is arithmetic Preprint, 2008, arXiv:math/0812.1383
  28. P.-E. Caprace N. Monod Decomposing locally compact groups into simple pieces Preprint, 2008, arXiv:math/0811.4101
  29. P.-E. Caprace N. Monod Fixed points and amenability in non-positive curvature Preprint, 2008
  30. Caprace Pierre-Emmanuel, Monod Nicolas, Some properties of non-positively curved lattices, 10.1016/j.crma.2008.07.006
  31. Caprace Pierre-Emmanuel, Monod Nicolas, Isometry groups of non-positively curved spaces: structure theory, 10.1112/jtopol/jtp026
  32. Croke Christopher B., Kleiner Bruce, Spaces with nonpositive curvature and their ideal boundaries, 10.1016/s0040-9383(99)00016-6
  33. Delzant Thomas, hyperboliques, 10.1215/s0012-7094-96-08321-0
  34. Eberlein Patrick, Lattices in Spaces of Nonpositive Curvature, 10.2307/1971104
  35. Eberlein Patrick, Isometry groups of simply connected manifolds of nonpositive curvature II, 10.1007/bf02392349
  36. Eberlein Patrick, Euclidean de Rham factor of a lattice of nonpositive curvature, 10.4310/jdg/1214437661
  37. P. Eberlein Geometry of nonpositively curved manifolds Geometry of nonpositively curved manifolds, Chicago Lectures in Mathematics (University of Chicago Press, Chicago, IL, 1996)
  38. Edelstein Michael, Hilton P., On non-expansive mappings of Banach spaces, 10.1017/s0305004100037956
  39. P. Eymard Moyennes invariantes et représentations unitaires 1972 300 Berlin Springer Lecture Notes in Mathematics
  40. Farb B., Relatively Hyperbolic Groups, 10.1007/s000390050075
  41. B. Farb G. C. Hruska A. Thomas B. Farb D. Fisher Problems on automorphism groups of nonpositively curved polyhedral complexes and their lattices Geometry, Topology and Rigidity to appear
  42. Farb Benson, Weinberger Shmuel, Isometries, rigidity and universal covers, 10.4007/annals.2008.168.915
  43. Farley Daniel, The action of Thompson's group on a CAT(0) boundary, 10.4171/ggd/36
  44. Glasner Y., Monod N., Amenable actions, free products and a fixed point property : Y. GLASNER AND N. MONOD, 10.1112/blms/bdl011
  45. Goto Morikuni, On an arcwise connected subgroup of a Lie group, 10.1090/s0002-9939-1969-0233923-x
  46. Gromoll Detlef, Wolf Joseph A., Some relations between the metric structure and the algebraic structure of the fundamental group in manifolds of nonpositive curvature, 10.1090/s0002-9904-1971-12747-7
  47. Gromov, Hyperbolic groups, 75
  48. Gromov, Asymptotic invariants of infinite groups, 1
  49. Haglund Frédéric, Réseaux de Coxeter-Davis et commensurateurs, 10.5802/aif.1633
  50. Haglund Frédéric, Finite index subgroups of graph products, 10.1007/s10711-008-9270-0
  51. Heintze Ernst, On homogeneous manifolds of negative curvature, 10.1007/bf01344139
  52. Howe Roger E., Moore Calvin C., Asymptotic properties of unitary representations, 10.1016/0022-1236(79)90078-8
  53. Januszkiewicz Tadeusz, Świątkowski Jacek, Simplicial nonpositive curvature, 10.1007/s10240-006-0038-5
  54. Kaimanovich Vadim A., Double ergodicity of the Poisson boundary and applications to bounded cohomology, 10.1007/s00039-003-0433-8
  55. Karpelevič, Doklady Akad. Nauk SSSR, 93, 401 (1953)
  56. Kleiner Bruce, The local structure of length spaces with curvature bounded above, 10.1007/pl00004738
  57. Kleiner Bruce, Leeb Bernhard, Rigidity of invariant convex sets in symmetric spaces, 10.1007/s00222-005-0471-y
  58. Landvogt, J. Reine Angew. Math., 518, 213 (2000)
  59. Lawson, Jr. H. Blaine, Yau Shing Tung, Compact manifolds of nonpositive curvature, 10.4310/jdg/1214430828
  60. Mal'cev, Rec. Math. [Mat. Sbornik], 405 (1940)
  61. G. A. Margulis Discrete subgroups of semisimple Lie groups Ergebnisse der Mathematik und ihrer Grenzgebiete 3 [Results in Mathematics and Related Areas 3] 17 (Springer, Berlin, 1991)
  62. Mineyev Igor, Monod Nicolas, Shalom Yehuda, Ideal bicombings for hyperbolic groups and applications, 10.1016/j.top.2004.01.008
  63. N. Monod Continuous bounded cohomology of locally compact groups 2001 1758 Berlin Springer Lecture Notes in Mathematics
  64. Monod Nicolas, Arithmeticity vs. Nonlinearity for Irreducible Lattices, 10.1007/s10711-004-6162-9
  65. Monod Nicolas, 10.1090/s0894-0347-06-00525-x
  66. Monod, C. R. Math. Acad. Sci. Soc. R. Can., 25, 82 (2003)
  67. Mostow George Daniel, The Extensibility of Local Lie Groups of Transformations and Groups on Surfaces, 10.2307/1969437
  68. Mostow, Mem. Amer. Math. Soc., 1955, 31 (1955)
  69. G. Moussong Hyperbolic coxeter groups PhD Thesis, Ohio State University, 1988
  70. Osin, Mem. Amer. Math. Soc., 179 (2006)
  71. Pink Richard, Compact Subgroups of Linear Algebraic Groups, 10.1006/jabr.1998.7439
  72. Prasad Gopal, Strong Approximation for Semi-Simple Groups Over Function Fields, 10.2307/1970924
  73. Prasad Gopal, Elementary proof of a theorem of Bruhat-Tits-Rousseau and of a theorem of Tits, 10.24033/bsmf.1959
  74. M. S. Raghunathan Discrete subgroups of Lie groups Ergebnisse der Mathematik und ihrer Grenzgebiete 68 (Springer, New York, 1972)
  75. Raghunathan M. S., The congruence subgroup problem, 10.1007/bf02829437
  76. Rémy Bertrand, Construction de réseaux en théorie de Kac-Moody, 10.1016/s0764-4442(00)80044-0
  77. Selberg, On discontinuous groups in higher-dimensional symmetric spaces, 147 (1960)
  78. Serre Jean-Pierre, Le Probleme des Groupes de Congruence Pour SL 2, 10.2307/1970630
  79. J.-P. Serre Arbres, amalgames, SL 2 . Astérisque 1977 46
  80. Shalom Yehuda, Rigidity of commensurators and irreducible lattices, 10.1007/s002220000064
  81. M. Simonnet Measures and probabilities Universitext (Springer, New York, 1996) with a foreword by Charles-Michel Marle
  82. M. Takesaki Theory of operator algebras I, Encyclopaedia of Mathematical Sciences 124 (Springer, Berlin, 2002). Reprint of the first 1979 edition, Operator Algebras and Non-commutative Geometry, 5
  83. Thomas Anne, Lattices acting on right-angled buildings, 10.2140/agt.2006.6.1215
  84. Thurston William P.HG, Three-Dimensional Geometry and Topology, Volume 1 : Volume 1, ISBN:9781400865321, 10.1515/9781400865321
  85. Tits J., Algebraic and Abstract Simple Groups, 10.2307/1970394
  86. Tits J, Free subgroups in linear groups, 10.1016/0021-8693(72)90058-0
  87. Tits Jacques, Uniqueness and presentation of Kac-Moody groups over fields, 10.1016/0021-8693(87)90214-6
  88. È. B. Vinberg Lie groups and Lie algebras 1994 41 Berlin Springer III, Encyclopaedia of Mathematical Sciences
  89. Structure of Lie groups and Lie algebras, A translation of Current problems in mathematics. Fundamental directions , vol. 41 (Russian), Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., Moscow, 1990, Translated by V. Minachin
  90. B. A. F. Wehrfritz Infinite linear groups. An account of the group-theoretic properties of infinite groups of matrices (Springer, New York, 1973). Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 76
  91. Wilson J. S., Groups with every proper quotient finite, 10.1017/s0305004100046818
  92. Wise Daniel T., Cubulating small cancellation groups, 10.1007/s00039-004-0454-y
  93. Wortman Kevin, Quasi-isometric rigidity of higher rankS–arithmetic lattices, 10.2140/gt.2007.11.995
  94. Yamabe, Osaka Math. J., 2, 13 (1950)
  95. Yau, Ann. of Math. Stud., 102, 669 (1982)
  96. Zimmer Robert J, Amenable ergodic group actions and an application to Poisson boundaries of random walks, 10.1016/0022-1236(78)90013-7
  97. Zimmer Robert J., Ergodic Theory and Semisimple Groups, ISBN:9781468494907, 10.1007/978-1-4684-9488-4
  98. Zimmer Robert J, Amenable actions and dense subgroups of Lie groups, 10.1016/0022-1236(87)90081-4