User menu

On the parameters of absorbing layers for shallow water models

Bibliographic reference Modave, Axel ; Deleersnijder, Eric ; Delhez, Eric J. M.. On the parameters of absorbing layers for shallow water models. In: Ocean Dynamics : theoretical, computational oceanography and monitoring, Vol. 60, no. 1, p. 65-79 (2010)
Permanent URL http://hdl.handle.net/2078.1/34216
  1. Beckers JM, Deleersnijder E (1993) Stability of a FBTCS scheme applied to the propagation of shallow-water inertia-gravity waves on various space grids. J Comput Phys 108:95–104
  2. Berenger JP (1994) A perfectly matched layer for the absorption of electromagnetic waves. J Comput Phys 114:185–200
  3. Berenger JP (2007) Perfectly matched layer (PML) for computational electromagnetics. Morgan and Claypool, San Rafael
  4. Bermúdez A, Hervella-Nieto L, Prieto A, Rodrígez R (2007) An optimal perfectly matched layer with unbounded absorbing function for time-harmonic acoustic scattering problems. J Comput Phys 223:469–488
  5. Blayo E, Debreu L (2005) Rebisiting open boundary conditions from the point of view of characteristic variables. Ocean Model 9:231–252
  6. Cailleau S, Fedorenko V, Barnier B, Blayo E, Debreu L (2008) Comparison of different numerical methods used to handle the open boundary of a regional ocean circulation model of the bay of biscay. Ocean Model 25(1–2):1–16
  7. Camerlengo AL, O’Brien JJ (1980) Open boundary conditions in rotating fluids. J Comput Phys 35:12–35
  8. Chapman DC (1985) Numerical treatment of cross-shelf open boundaries in a barotropic coastal ocean model. J Phys Oceanogr 15:1060–1075
  9. Collino F, Monk PB (1998) Optimizing the perfectly matched layer. Comput Methods Appl Mech Eng 164:157–171
  10. Darblade G, Baraille R, Le Roux AY, Carton X, Pinchon D (1997) Conditions limites non réfléchissantes pour un modùle de Saint-Venant bidimensionnel barotrope linéarisé. Comptes Rendus de l’Académie des Sciences Paris 324:485–490
  11. Davies HC (1976) A lateral boundary formulation for multi-level prediction models. Q J R Meteorol Soc 102:405–418
  12. Engquist Bjorn, Majda Andrew, Absorbing boundary conditions for the numerical simulation of waves, 10.1090/s0025-5718-1977-0436612-4
  13. Flather R (1976) A tidal model of the north-west european continental shelf. Mémoires Société Royale des Sciences de Liège 10:141–164
  14. Gan J, Allen JS (2005) On open boundary conditions for a limited-area coastal model off oregon. part 1: response to idealized wind forcing. Ocean Model 8(1–2):115–133
  15. Hedström GW (1979) Non reflecting boundary conditions for non linear hyperbolic systems. J Comput Phys 30:222–237
  16. Herzfeld M (2009) The role of numerical implementation on open boundary behaviour in limited area ocean models. Ocean Model 27:18–32
  17. Holthuijsen Leo H., Waves in Oceanic and Coastal Waters, ISBN:9780511618536, 10.1017/cbo9780511618536
  18. Hu FQ (1996) On absorbing boundary conditions for linearized euler equations by a perfectly matched layer. J Comput Phys 129:201–219
  19. Hu FQ (2001) A stable, perfectly matched layer for linearized euler equations in unsplit physical variables. J Comput Phys 173:455–480
  20. Hu FQ (2008) Development of PML absorbing boundary conditions for computational aeroacoustics: a progress review. Comput Fluids 37:336–348
  21. Israeli M, Orszag SA (1981) Approximation of radiation boundary conditions. J Comput Phys 41:115–135
  22. Jensen TG (1998) Open boundary conditions in stratified ocean models. J Mar Syst 16(3–4):297–322
  23. Lavelle JW, Thacker WC (2008) A pretty good sponge: dealing with open boundaries in limited-area ocean models. Ocean Model 20:270–292
  24. LeBlond PH, Mysak LA (1978) Waves in the ocean. Elsevier oceanography series 20. Elsevier, Amsterdam
  25. Marchesiello P, McWilliams JC, Shchepetkin A (2001) Open boundary conditions for long-term integration of regional oceanic models. Ocean Model 3:1–20
  26. Martinsen EA, Engedahl H (1987) Implementation and testing of a lateral boundary scheme as an open boundary condition in a barotropic ocean model. Coast Eng 11:603–627
  27. McDonald A (2002) A step toward transparent boundary conditions for meteorological models. Mon Weather Rev 130:140–151
  28. Miller MJ, Thorpe AJ (1981) Radiation conditions for the lateral boundaries of limited-area numerical models. Q J R Meteorol Soc 107:615–628
  29. Morse PM, Feshbach H (1999) Methods of theoretical physics. International series in pure and applied physics. McGraw-Hill, Boston
  30. Navon IM, Neta B, Hussaini MY (2004) A perfectly matched layer approach to the linearized shallow water equations models. Mon Weather Rev 132:1369–1378
  31. Nycander J, Döös K (2003) Open boundary conditions for barotropic waves. J Geophys Res-Oceans 108(C5):3168–3187
  32. Nycander J, Hogg AM, Frankcombe LM (2008) Open boundary conditions for nonlinear channel flow. Ocean Model 24(3–4):108–121
  33. Orlanski I (1976) A simple boundary condition for unbounded hyperbolic flows. J Comput Phys 21:251–269
  34. Palma ED, Matano RP (1998) On the implementation of passive open boundary conditions for a general circulation model: the barotropic mode. J Geophys Res-Oceans 103(C1):1319–1341
  35. Palma ED, Matano RP (2001) Dynamical impacts associated with radiation boundary conditions. J Sea Res 46(2):117–132
  36. Pearson RA (1974) Consistent boundary conditions for numerical models of systems that admit dispersive waves. J Atmos Sci 31:1481–1489
  37. Raymond WH, Kuo HL (1984) A radiation boundary condition for multi-dimensional flows. Q J R Meteorol Soc 110:535–551
  38. Røed L, Cooper C (1986) Open boundary conditions in numerical ocean models. In: O’Brien JJ (ed) Advanced physical oceanography numerical modelling, vol 186. NATO ASI Series C, pp 411–436
  39. RUDDICK K. G., DELEERSNIJDER E., MULDER T. D. E., LUYTEN P. J., A model study of the Rhine discharge front and downwelling circulation, 10.1034/j.1600-0870.1994.t01-1-00005.x
  40. Ruddick KG, Deleersnijder E, Luyten PJ, Ozer J (1995) Haline stratification in the rhine-meuse freshwater plume: a tree-dimensional model sensitivity analysis. Cont Shelf Res 15(13):1597–1630
  41. Sommerfeld A (1949) Partial differential equations in physics. Academic Press
  42. Treguier AM, Barnier B, de Miranda AP, Molines JM, Grima N, Imbard M, Madec G, Messager C, Reynaud T, Michel S (2001) An eddy-permitting model of the atlantic circulation: evaluating open boundary conditions. J Geophys Res-Oceans 106(C10):22115–22129