User menu

Phases of Polonium via Density Functional Theory

Bibliographic reference Verstraete, Matthieu J.. Phases of Polonium via Density Functional Theory. In: Physical Review Letters, Vol. 104, no. 3 (2010)
Permanent URL
  1. Oganov Artem R., Chen Jiuhua, Gatti Carlo, Ma Yanzhang, Ma Yanming, Glass Colin W., Liu Zhenxian, Yu Tony, Kurakevych Oleksandr O., Solozhenko Vladimir L., Ionic high-pressure form of elemental boron, 10.1038/nature07736
  2. Matsuoka Takahiro, Shimizu Katsuya, Direct observation of a pressure-induced metal-to-semiconductor transition in lithium, 10.1038/nature07827
  3. Ma Yanming, Eremets Mikhail, Oganov Artem R., Xie Yu, Trojan Ivan, Medvedev Sergey, Lyakhov Andriy O., Valle Mario, Prakapenka Vitali, Transparent dense sodium, 10.1038/nature07786
  4. Mao W. L., Bonding Changes in Compressed Superhard Graphite, 10.1126/science.1089713
  5. E. Y. Tonkov, High Pressure Phase Transformations (1992)
  6. Beamer William H., Maxwell Charles R., Physical Properties of Polonium. II. X‐Ray Studies and Crystal Structure, 10.1063/1.1747155
  7. McMahon Malcolm I., Nelmes Richard J., High-pressure structures and phase transformations in elemental metals, 10.1039/b517777b
  8. Maxwell Charles R., Physical Properties of Polonium. I. Melting Point, Electrical Resistance, Density, and Allotropy, 10.1063/1.1747154
  9. Legut Dominik, Friák Martin, Šob Mojmír, Why Is Polonium Simple Cubic and So Highly Anisotropic?, 10.1103/physrevlett.99.016402
  10. Min B. I., Shim J. H., Park Min Sik, Kim Kyoo, Kwon S. K., Youn S. J., Origin of the stabilized simple-cubic structure in polonium: Spin-orbit interaction versus Peierls instability, 10.1103/physrevb.73.132102
  11. Kraig Robert E, Roundy David, Cohen Marvin L, A study of the mechanical and structural properties of polonium, 10.1016/j.ssc.2003.08.001
  12. Karen Pavel, Most pressurized elements aren’t simple cubic, 10.1063/1.2982101
  13. R. M. Martin, Electronic Structure (2004)
  14. Baroni Stefano, de Gironcoli Stefano, Dal Corso Andrea, Giannozzi Paolo, Phonons and related crystal properties from density-functional perturbation theory, 10.1103/revmodphys.73.515
  15. Gonze Xavier, A brief introduction to the ABINIT software package, 10.1524/zkri.220.5.558.65066
  16. Kohn W., Sham L. J., Self-Consistent Equations Including Exchange and Correlation Effects, 10.1103/physrev.140.a1133
  17. Hartwigsen C., Goedecker S., Hutter J., Relativistic separable dual-space Gaussian pseudopotentials from H to Rn, 10.1103/physrevb.58.3641
  18. Dal Corso Andrea, Density functional perturbation theory for lattice dynamics with fully relativistic ultrasoft pseudopotentials: Application to fcc-Pt and fcc-Au, 10.1103/physrevb.76.054308
  19. Verstraete Matthieu J., Torrent Marc, Jollet François, Zérah Gilles, Gonze Xavier, Density functional perturbation theory with spin-orbit coupling: Phonon band structure of lead, 10.1103/physrevb.78.045119
  20. Grabowski Blazej, Hickel Tilmann, Neugebauer Jörg, Ab initiostudy of the thermodynamic properties of nonmagnetic elementary fcc metals: Exchange-correlation-related error bars and chemical trends, 10.1103/physrevb.76.024309
  21. Kohn W., Image of the Fermi Surface in the Vibration Spectrum of a Metal, 10.1103/physrevlett.2.393
  22. Brocklehurst R. E., Goode J. M., Vassamillet L. F., Coefficient of Expansion of Polonium, 10.1063/1.1743915
  23. Lange’s Handbook of Chemistry (1999)
  24. Murnaghan F. D., The Compressibility of Media under Extreme Pressures, 10.1073/pnas.30.9.244
  25. Souvatzis P., Eriksson O., Katsnelson M. I., Rudin S. P., Entropy Driven Stabilization of Energetically Unstable Crystal Structures Explained from First Principles Theory, 10.1103/physrevlett.100.095901
  26. Zhang Peihong, Xue Yu, Dev Pratibha, Electron–phonon renormalization and phonon anharmonicity in metals, 10.1016/j.ssc.2008.07.034