User menu

Nonparametric conditional efficiency measures: asymptotic properties

Bibliographic reference Jeong, Seok-Oh ; Park, Byeong U. ; Simar, Léopold. Nonparametric conditional efficiency measures: asymptotic properties. In: Annals of Operations Research, Vol. 173, no. 1, p. 105-122 (2010)
Permanent URL
  1. Adolphson, D. L., Cornia, G. C., & Walters, L. C. (1991). A unified framework for classifying DEA models. Operations Research, 90, 647–657.
  2. Banker, R. D., & Morey, R. C. (1986). Efficiency analysis for exogenously fixed inputs and outputs. Operations Research, 34, 513–521.
  3. Bhattacharyya, A., Lovell, C. A. K., & Sahay, P. (1997). The impact of liberalization on the productive efficiency of Indian commercial banks. European Journal of Operational Research, 98, 332–347. doi: 10.1016/S0377-2217(96)00351-7 .
  4. Bonaccorsi, A., Daraio, C., & Simar, L. (2006). Size, scope and trade-off in the productivity of universities: an application of robust nonparametric methods to Italian data. Scientometrics, 66(2), 389–410. doi: 10.1007/s11192-006-0028-x .
  5. Bonaccorsi, A., Daraio, C., & Simar, L. (2007a). Efficiency and productivity in European Universities. Exploring trade-offs in the strategic profile. In A. Bonaccorsi & C. Daraio (Eds.), Universities as strategic units. Productivity and efficiency patterns in the European university system. Edward Elgar PRIME collection.
  6. Bonaccorsi, A., Daraio, C., Räty, T., & Simar, L. (2007b). Efficiency and University size: discipline-wise evidence from the European Universities. In A. Kangasharju (Ed.), Hyvinvointipalvelujen tuottavuus: tuloksia opintien varrelta. Helsinki: VATT.
  7. Cazals, C., Florens, J. P., & Simar, L. (2002). Nonparametric frontier estimation: a robust approach. Journal of Econometrics, 106, 1–25. doi: 10.1016/S0304-4076(01)00080-X .
  8. Charnes, A., Cooper, W. W., & Rhodes, E. (1978). Measuring the inefficiency of decision making units. European Journal of Operational Research, 2, 429–444. doi: 10.1016/0377-2217(78)90138-8 .
  9. Daraio, C., & Simar, L. (2005). Introducing environmental variables in nonparametric frontier models: a probabilistic approach. Journal of Productivity Analysis, 24, 93–121. doi: 10.1007/s11123-005-3042-8 .
  10. Daraio, C., & Simar, L. (2006). A robust nonparametric approach to evaluate and explain the performance of mutual funds. European Journal of Operational Research, 175(1), 516–542. doi: 10.1016/j.ejor.2005.06.010 .
  11. Daraio, C., & Simar, L. (2007a). Advanced robust and nonparametric methods in efficiency analysis. New-York: Springer.
  12. Daraio, C., & Simar, L. (2007b). Conditional nonparametric frontier models for convex and nonconvex technologies: a unifying approach. Journal of Productivity Analysis, 28, 13–32. doi: 10.1007/s11123-007-0049-3 .
  13. Deprins, D., Simar, L., & Tulkens, H. (1984). Measuring labor inefficiency in post offices. In M. Marchand, P. Pestieau, & H. Tulkens (Eds.), The performance of public enterprises: concepts and measurements. Amsterdam: North-Holland.
  14. Fan, J., Yao, Q., & Tong, H. (1996). Estimation of conditional densities and sensitivity measures in nonlinear dynamical systems. Biometrika, 83, 189–206. doi: 10.1093/biomet/83.1.189 .
  15. Farrell, M. J. (1957). The measurement of productive efficiency. Journal of the Royal Statistical Society. Series A (General), 120, 253–281. doi: 10.2307/2343100 .
  16. Fried, H. O., Lovell, C. A. K., & Vanden Eeckaut, P. (1993). Evaluating the performance of U.S. credit unions. Journal of Banking & Finance, 17, 251–265. doi: 10.1016/0378-4266(93)90031-8 .
  17. Fried, H. O., Schmidt, S. S., & Yaisawarng, S. (1999). Incorporating the operating environment into a nonparametric measure of technical efficiency. Journal of Productivity Analysis, 12, 249–267. doi: 10.1023/A:1007800306752 .
  18. Gijbels, I., Mammen, E., Park, B. U., & Simar, L. (1999). On estimation of monotone and concave frontier functions. Journal of the American Statistical Association, 94, 220–228. doi: 10.2307/2669696 .
  19. Hall, P., & Park, B. U. (2002). New methods for bias correction at endpoints and boundaries. The Annals of Statistics, 30, 1460–1479. doi: 10.1214/aos/1035844983 .
  20. Hall, P., Racine, J., & Li, Q. (2004). Cross-validation and the estimation of conditional probability densities. Journal of the American Statistical Association, 99, 1015–1026. doi: 10.1198/016214504000000548 .
  21. Jeong, S.-O. (2004). Asymptotic distribution of DEA efficiency scores. Journal of the Korean Statistical Society, 33, 449–458.
  22. Jeong, S.-O., & Park, B. U. (2006). Large sample approximation of the limit distribution of convex-hull estimators of boundaries. Scandinavian Journal of Statistics, 33, 139–151. doi: 10.1111/j.1467-9469.2006.00452.x .
  23. Jeong, S.-O., & Simar, L. (2006). Linearly interpolated FDH efficiency score for nonconvex frontiers. Journal of Multivariate Analysis, 97, 2141–2161. doi: 10.1016/j.jmva.2005.12.006 .
  24. Jones, M. C., Marron, J. S., & Sheather, S. J. (1996). A brief survey of bandwidth selection for density estimation. Journal of the American Statistical Association, 91, 401–408. doi: 10.2307/2291420 .
  26. Kneip, A., Simar, L., & Wilson, P. W. (2003, to appear). Asymptotics for DEA estimators in nonparametric frontier models. Econometric Theory.
  27. Li, Q., & Racine, J. (2007, forthcoming). Nonparametric estimation of conditional CDF and quantile functions with mixed categorical and continuous data. Journal of Business & Economic Statistics.
  28. Lovell, C. A. K. (1993). Production Frontiers and Productive Efficiency. In H. O. Fried, C. A. K. Lovell, & S. S. Schmidt (Eds.), The measurement of productivity efficiency: techniques and applications. New York: Oxford University Press.
  29. McCarty, T., & Yaisawarng, S. (1993). Technical efficiency in New Jersey school districts. In H. O. Fried, C. A. K. Lovell, & S. S. Schmidt (Eds.), The measurement of productivity efficiency: techniques and applications. New York: Oxford University Press.
  30. Park, B. U., & Turlach, B. (1992). Practical performance of several data driven bandwidth selectors. Computational Statistics, 7, 251–270.
  31. Park, B. U., Simar, L., & Weiner, C. (2000). The FDH estimator for productivity efficiency scores: Asymptotic properties. Econometric Theory, 16, 855–877. doi: 10.1017/S0266466600166034 .
  32. Park, B. U., Jeong, S.-O., & Lee, Y. K. (2006). Nonparametric estimation of production efficiency. In J. Fan & H. L. Koul (Eds.), Frontiers in statistics. London: Imperial College Press.
  33. Shephard, R. W. (1970). Theory of cost and production function. Princeton: Princeton University Press.
  34. Simar, L., & Wilson, P. W. (2000). Statistical inference in nonparametric frontier models: The state of the art. Journal of Productivity Analysis, 13, 49–78. doi: 10.1023/A:1007864806704 .
  35. Simar, L., & Wilson, P. (2007). Estimation and inference in two-stage, semi-parametric models of production processes. Journal of Econometrics, 136(1), 31–64. doi: 10.1016/j.jeconom.2005.07.009 .
  36. Tulkens, H. (1993). On FDH efficiency analysis: some methodological issues and application to retail banking, courts, and urban transit. Journal of Productivity Analysis, 4, 183–210. doi: 10.1007/BF01073473 .