User menu

The Trigonometric Grassmannian and a Difference W-algebra

Bibliographic reference Haine, Luc ; Horozov, Emil ; Iliev, Plamen. The Trigonometric Grassmannian and a Difference W-algebra. In: Transformation Groups, Vol. 15, no. 1, p. 92-114 (2010)
Permanent URL http://hdl.handle.net/2078.1/34117
  1. B. N. Bakalov, L. S. Georgiev, I. T. Todorov, A QFT approach to W 1+∞, in: New Trends in Quantum Field Theory, Proc. of the 1995 Razlog Workshop (A. Ganchev et al., eds.), Heron Press, Sofia, 1996, pp. 147–158.
  2. B. Bakalov, E. Horozov, and M. Yakimov, Tau-functions as highest weight vectors for W 1+∞ algebra, J. Phys. A: Math. Gen. 29 (1996), 5565–5573.
  3. B. Bakalov, E. Horozov, M. Yakimov, Bäcklund–Darboux transformations in Sato’s Grassmannian, Serdica Math. J. 22 (1996), 571–586.
  4. B. Bakalov, E. Horozov, M. Yakimov, Bispectral algebras of commuting ordinary differential operators, Comm. Math. Phys. 190 (1997), 331–373.
  5. B. Bakalov, E. Horozov, M. Yakimov, General methods for constructing bispectral operators, Phys. Lett. A 222 (1996), 59–66.
  6. B. Bakalov, E. Horozov, M. Yakimov, Highest weight modules over W 1+∞; and the bispectral problem, Duke Math. J. 93 (1998), 41–72.
  7. Yu. Berest, O. Chalykh, A ∞-modules and Calogero–Moser spaces, J. Reine Angew. Math. 607 (2007), 69–112.
  8. Yu. Berest, G. Wilson, Automorphisms and ideals of the Weyl algebra, Math. Ann. 318 (2000), 127–147.
  9. F. Calogero, Solution of the one-dimensional n-body problems with quadratic and/or inversely quadratic pair potentials. J. Math. Phys. 12 (1971), 419–436.
  10. E. Date, M. Jimbo, M. Kashiwara, T. Miwa, Transformation groups for soliton equations, in: Nonlinear Integrable Systems—Classical and Quantum Theory, Proc. RIMS Symp., Kyoto, 1981 (M. Jimbo, T. Miwa, eds.), World Scientific, Singapore, 1983, pp. 39–111.
  11. J. J. Duistermaat, F. A. Grünbaum, Differential equations in the spectral parameter, Comm. Math. Phys. 103 (1986), 177–240.
  12. E. Frenkel, N. Reshetikhin, M. A. Semenov-Tian-Shansky, Drinfeld–Sokolov reduction for difference operators and deformations of W-algebras. I. The case of Virasoro algebra, Comm. Math. Phys. 192 (1998), 605–629.
  13. L. Haine, KP trigonometric solitons and an adelic flag manifold, SIGMA Symmetry Integrability Geom. Methods Appl. 3 (2007), Paper 015, 15 pp.
  14. L. Haine, and P. Iliev, Commutative rings of difference operators and an adelic flag manifold, Int. Math. Res. Not. 2000 (2000), no. 6, 281–323.
  15. L. Haine, E. Horozov, P. Iliev, Trigonometric Darboux transformations and Calogero–Moser matrices, Glasg. Math. J. 51 (2009), Issue A, 95–106.
  16. Horozov Emil, Calogero-Moser spaces and an adelic $W$-algebra, 10.5802/aif.2152
  17. P. Iliev, q-KP hierarchy, bispectrality and Calogero–Moser systems, J. Geom. Phys. 35 (2000), 157–182.
  18. P. Iliev, Rational Ruijsenaars–Schneider hierarchy and bispectral difference operators, Phys. D 229 (2007), 184–190.
  19. V. G. Kac, D. H. Peterson, Spin and wedge representations of infinite-dimensional Lie algebras and groups, Proc. Natl. Acad. Sci. USA 78 (1981), 3308–3312.
  20. V. G. Kac, A. Radul, Quasifinite highest weight modules over the Lie algebra of differential operators on the circle, Comm. Math. Phys. 157 (1993), 429–457.
  21. V. G. Kac, A. Raina, Bombay Lectures on Highest Weight Representations of Infinite-Dimensional Lie Algebras, Adv. Ser. Math. Phys., Vol. 2, World Scientific, Singapore, 1987.
  22. A. Kasman, Bispectral KP solutions and linearization of Calogero–Moser particle systems, Comm. Math. Phys. 172 (1995), 427–448.
  23. A. Kasman, M. Rothstein, Bispectral Darboux transformations: the generalized Airy case, Phys. D 102 (1997), 159–176.
  24. D. Kazhdan, B. Kostant, S. Sternberg, Hamiltonian group actions and dynamical systems of Calogero type, Comm. Pure Appl. Math. 31 (1978), 481–507.
  25. J. I. Liberati, Bispectral property, Darboux transformation and the Grassmannian Grrat, Lett. Math. Phys. 41 (1997), 321–332.
  26. J. Moser, Three integrable Hamiltonian systems connected with isospectral deformations, Adv. Math. 16 (1975), 197–220.
  27. E. Mukhin, V. Tarasov, A. Varchenko, Bispectral and (gl N ; gl M ) dualities, discrete versus differential, Adv. Math. 218 (2008), 216–265.
  28. M. Sato, Soliton equations as dynamical systems on infinite-dimensional Grassmann manifolds, RIMS Kokyuroku 439 (1981), 30–40.
  29. G. Segal, G. Wilson, Loop groups and equations of KdV type, Publ. Math. Inst. Hautes Études Sci. 61 (1985), 5–65.
  30. M. A. Semenov-Tian-Shansky, A.V. Sevostyanov, Drinfeld-Sokolov reduction for difference operators and deformations of W-algebras. II. The general semisimple case, Comm. Math. Phys. 192 (1998), 631–647.
  31. G. Wilson, Bispectral commutative ordinary differential operators, J. Reine Angew. Math. 442 (1993), 177–204.
  32. G. Wilson, Collisions of Calogero–Moser particles and an adelic Grassmannian (with an appendix by I. G. Macdonald), Invent. Math. 133 (1998), 1–41.