User menu

Accès à distance en utilisant le proxy de l'UCL :

Visual event recognition using decision trees

  1. Amit Y, Geman D (1997) Shape quantization and recognition with randomized trees. Neural Comput 9(7):1545–1588
  2. Bobick AF, Davis JW (2001) The recognition of human movement using temporal templates. IEEE Trans Pattern Anal Mach Intell 23:257–267
  3. Breiman L (2001) Random forests. Mach Learn 45(1):5–32
  4. Breiman L, Friedman J, Olsen R, Stone C (1984) Classification and regression trees. CRC, Boca Raton. ISBN 0412048418
  5. Buxton H (2003) Learning and understanding dynamic scene activity: a review. Image Vis Comput 21(1):125–136
  6. Cucchiara R, Grana C, Piccardi M, Prati A (2003) Detecting moving objects, ghosts and shadows in video stream. IEEE Trans Pattern Anal Mach Intell 25:1337–1342
  7. Dee H, Velastin S (2007) How close are we to solving the problem of automated visual surveillance? A review of real-world surveillance, scientific progress and evaluative mechanisms. In: Machine vision and applications, special issue on video surveillance research in industry and Academic Springer. Springer, New York
  8. Geurts P, Ernst D, Wehenkel L (2006) Extremely randomized trees. Mach Learn 63(1):3–42
  9. Gorelick L, Blank M, Shechtman E, IM, Basri R (2005) Actions as space-time shapes. In: ICCV, pp 1395–1402
  10. Haering N, Venetianer PL, Lipton A (2008) The evolution of video surveillance: an overview. Mach Vis Appl 19(5–6):279–290
  11. Haritaoglu I, Harwood D, Davis L (2000) W4: real-time surveillance of people and their activities. IEEE Trans Pattern Anal Mach Intell 22:809–830
  12. Hu W., Tan T., Wang L., Maybank S., A Survey on Visual Surveillance of Object Motion and Behaviors, 10.1109/tsmcc.2004.829274
  13. Kadous M, Sammut C (2005) Classification of multivariate time series and structured data using constructive induction. Mach Learn J 58:179–216
  14. Lee D (2005) Effective gaussian mixture learning for video background substraction. IEEE Trans Pattern Anal Mach Intell 27(5):827–832
  15. Lin W, Sun M-T, Poovandran R, Zhang Z (2008) Human activity recognition for video surveillance. In: IEEE international symposium on circuits and systems, 2008. ISCAS 2008, pp 2737–2740
  16. McKenna S, Jabri S, Duric Z, Rosenfeld A, Wechsler H (2000) Tracking groups of people. Comput Vis Image Underst 80:42–56
  17. Medioni G, Cohen I, Bremond F, Hongeng S, Nevatia R (2001) Event detection and analysis from video streams. IEEE Trans Pattern Anal Mach Intell 23(8):873–889
  18. Moosmann F, Nowak E, Jurie F (2008) Randomized clustering forests for image classification. IEEE Trans Pattern Anal Mach Intell 30(9):1632–1646
  19. Nascimento J, Marques J (2006) Performance evaluation of object detection algorithms for video surveillance. IEEE Trans Multimedia 8:761–774
  20. Ohta N (2001) A statistical approach to backgound suppression for surveillance systems. ICCVÕ01 1:481–486
  21. Oliver N, Rosario B, Pentland A (2000) A bayesian computer vision system for modeling human interactions. IEEE Trans Pattern Anal Mach Intell 22(8):831–843
  22. Orrite C, Martinez F, Herrero E, Ragheb H, Velastin S (2008) Independent viewpoint silhouette-based human action modelling and recognition. In: 1st int workshop on machine learning for vision-based motion analysis (MLVMA’08), in ECCV’08. Marseille, France
  23. Pérez Ó, Piccardi M, García J, Molina JM (2007) Comparison of classifiers for human activity recognition. In: IWINAC (2), pp 192–201
  24. Pérez Ó, Piccardi M, García J, Molina JM (2007) Comparison of classifiers for human activity recognition. In: IWINAC ’07: proceedings of the 2nd international work-conference on nature inspired problem-solving methods in knowledge engineering, pp 192–201
  25. Remagnino P, Tan T, Baker K (1998) Multi-agent visual surveillance of dynamic scenes. Image Vis Comput 16(8):529–532
  26. Ribeiro P, Santos-Victor J (2005) Human activities recognition from video: modeling, feature selection and classification architecture. In: Proc. workshop on human activity recognition and modelling (HAREM 2005), pp 61–70
  27. Simon C (2009) Visual event recognition: application on the caviar video clips and simulated trajectories. Technical report, TELE Lab, UCL, Belgium
  28. Simon C, Meessen J, Tzovaras D, De Vleeschouwer C (2007) Using decision trees for knowledge-assisted topologically structured data analysis. In: International workshop on image analysis for multimedia interactive services (WIAMIS). Santorini
  29. Stauffer C, Grimson W (1999) Adaptive background mixture models for real-time tracking. IEEE Comput Vis Pattern Recognit 2:25–258
  30. Veeraraghavan H, Papanikolopoulos N, Schrater PR (2007) Learning dynamic event descriptions in image sequences. In: CVPR
  31. Wang L, Suter D (2007) Learning and matching of dynamic shape manifolds for human action recognition. Image Process IEEE Trans 16(6):1646–1661
  32. Wehenkel Louis A., Automatic Learning Techniques in Power Systems, ISBN:9781461374893, 10.1007/978-1-4615-5451-6
  33. Xiang T, Shaogang G (2006) Beyond tracking: modelling activity and understanding behaviour. Int J Comput Vis 67(1):21–51
  34. Yilmaz A, Shah M (2005) Actions sketch: a novel action representation. Comput VisPattern Recognit (CVPR 05), IEEE Comput Soc Conf 1:984–989
  35. Zhang D, Gatica-Perez D, Bengio S, McCowan I (2005) Semi-supervised adapted hmms for unusual event detection. In: CVPR ’05: proceedings of the 2005 IEEE computer society conference on computer vision and pattern recognition (CVPR’05), vol 1, pp 611–618
Bibliographic reference Simon, Cedric ; Meessen, Jerome ; De Vleeschouwer, Christophe. Visual event recognition using decision trees. In: Multimedia Tools and Applications : an international journal, Vol. 50, no. 1, p. 95-121 (2010)
Permanent URL