User menu

A goodness-of-fit test for generalised conditional linear models under left truncation and right censoring

Bibliographic reference Teodorescu, Bianca ; Van Keilegom, Ingrid. A goodness-of-fit test for generalised conditional linear models under left truncation and right censoring. In: Journal of Nonparametric Statistics, Vol. 22, no. 5, p. 547-566 (2010)
Permanent URL http://hdl.handle.net/2078.1/33731
  1. Aalen O. O., Lecture Notes on Mathematical Statistics and Probability, 2, 1 (1980)
  2. Aalen Odd O., Further results on the non-parametric linear regression model in survival analysis, 10.1002/sim.4780121705
  3. Akritas Michael G., On the Use of Nonparametric Regression Techniques for Fitting Parametric Regression Models, 10.2307/2532849
  4. Andersen Per Kragh, Testing Goodness of Fit of Cox's Regression and Life Model, 10.2307/2530289
  5. Arjas Elja, A Graphical Method for Assessing Goodness of Fit in Cox's Proportional Hazards Model, 10.2307/2288942
  6. CAI ZONGWU, SUN YANQING, Local Linear Estimation for Time-Dependent Coefficients in Cox's Regression Models, 10.1111/1467-9469.00320
  7. Cao Ricardo, González-Manteiga Wenceslao, Goodness-of-fit tests for conditional models under censoring and truncation, 10.1016/j.jeconom.2007.08.011
  8. Qing Chen Ying, Accelerated Hazards Regression Model and Its Adequacy for Censored Survival Data, 10.1111/j.0006-341x.2001.00853.x
  9. Dabrowska Dorota M., Uniform Consistency of the Kernel Conditional Kaplan-Meier Estimate, 10.1214/aos/1176347261
  10. de Jong Peter, A central limit theorem for generalized quadratic forms, 10.1007/bf00354037
  11. GILL RICHARD, SCHUMACHER MARTIN, A simple test of the proportional hazards assumption, 10.1093/biomet/74.2.289
  12. González-Manteiga W., Cao R., Testing the hypothesis of a general linear model using nonparametric regression estimation, 10.1007/bf02562674
  13. Grigoletto Matteo, Akritas Michael G., Analysis of Covariance with Incomplete Data Via Semiparametric Model Transformations, 10.1111/j.0006-341x.1999.01177.x
  14. Hardle W., Mammen E., Comparing Nonparametric Versus Parametric Regression Fits, 10.1214/aos/1176349403
  15. Huffer Fred W., McKeague Ian W., Weighted Least Squares Estimation for Aalen's Additive Risk Model, 10.2307/2289721
  16. Iglesias Pérez C., González Manteiga W., Strong representation of a generalized product-limit estimator for truncated and censored data with some applications, 10.1080/10485259908832761
  17. Iglesias-Pérez C., The Annals of the Institute of Statistical Mathematics, 55, 331 (2003)
  18. Jung S-H, Regression analysis for long-term survival rate, 10.1093/biomet/83.1.227
  19. Kaplan E. L., Meier Paul, Nonparametric Estimation from Incomplete Observations, 10.2307/2281868
  20. Kauermann Göran, Penalized spline smoothing in multivariable survival models with varying coefficients, 10.1016/j.csda.2004.05.006
  21. Klein J. P., Survival Analysis: Techniques for Censored and Truncated Data (1997)
  22. Lambert, P., and Eilers, P.H.C. (2004), ‘Bayesian Survival Models with Smooth Time-Varying Coefficients using Penalized Poisson Regression’, Technical Report TR0435.http://www.stat.ucl.ac.be/publications.
  23. Marzec L, On fitting Cox's regression model with time-dependent coefficients, 10.1093/biomet/84.4.901
  24. MCKEAGUE IAN W., SASIENI PETER D., A partly parametric additive risk model, 10.1093/biomet/81.3.501
  25. McKeague Ian W., Utikal Klaus J., Inference for a Nonlinear Counting Process Regression Model, 10.1214/aos/1176347745
  26. Murphy S. A., Scandinavian Journal of Statistics, 20, 35 (1993)
  27. Murphy S.A., Sen P.K., Time-dependent coefficients in a Cox-type regression model, 10.1016/0304-4149(91)90039-f
  28. Nan, B., and Lin, X. (2003), ‘A Varying-Coefficient Cox Model for the Effect of Age at a Marker Event on Age at Menopause’.http://www.bepress.com/umichbiostat/paper16.
  29. Parzen Michael, Lipsitz Stuart R., A Global Goodness-of-Fit Statistic for Cox Regression Models, 10.1111/j.0006-341x.1999.00580.x
  30. Rossini A. J., Wei L. J., Ying Z., Checking adequacy of the semiparametric location shift model with censored data, 10.1007/bf00128572
  31. SCHOENFELD DAVID, Chi-squared goodness-of-fit tests for the proportional hazards regression model, 10.1093/biomet/67.1.145
  32. Silverman Bernard W., Weak and Strong Uniform Consistency of the Kernel Estimate of a Density and its Derivatives, 10.1214/aos/1176344076
  33. Subramanian Sundarraman, Parameter estimation in regression for long-term survival rate from censored data, 10.1016/s0378-3758(01)00084-2
  34. Subramanian Sundarraman, Survival-rate regression using kernel conditional Kaplan–Meier estimators, 10.1016/s0378-3758(03)00140-x
  35. Teodorescu, B. (2008), ‘Generalized Conditional Linear Models with Time-Varying Coefficients under Left Truncation and Right Censoring’, PhD thesis, Université catholique de Louvain, Belgiumhttp://edoc.bib.ucl.ac.be:81/ETD-db/collection/available/BelnUcetd-12122008-014249/unrestricted/PhDthesis-BiancaTeodorescu.pdf.
  36. Teodorescu B., The Annals of the Institute of Statistical Mathematics (2009)
  37. Tian Lu, Zucker David, Wei L. J, On the Cox Model With Time-Varying Regression Coefficients, 10.1198/016214504000000845
  38. TSAI WEI-YANN, JEWELL NICHOLAS P., WANG MEI-CHENG, A note on the product-limit estimator under right censoring and left truncation, 10.1093/biomet/74.4.883
  39. Yang Song, Some Scale Estimators and Lack-of-Fit Tests for the Censored Two-Sample Accelerated Life Model, 10.2307/2533855
  40. Zucker David M., Karr Alan F., Nonparametric Survival Analysis with Time-Dependent Covariate Effects: A Penalized Partial Likelihood Approach, 10.1214/aos/1176347503