User menu

A goodness-of-fit test for generalised conditional linear models under left truncation and right censoring

Bibliographic reference Teodorescu, Bianca ; Van Keilegom, Ingrid. A goodness-of-fit test for generalised conditional linear models under left truncation and right censoring. In: Journal of Nonparametric Statistics, Vol. 22, no. 5, p. 547-566 (2010)
Permanent URL
  1. Aalen O. O., Lecture Notes on Mathematical Statistics and Probability, 2, 1 (1980)
  2. Aalen Odd O., Further results on the non-parametric linear regression model in survival analysis, 10.1002/sim.4780121705
  3. Akritas Michael G., On the Use of Nonparametric Regression Techniques for Fitting Parametric Regression Models, 10.2307/2532849
  4. Andersen Per Kragh, Testing Goodness of Fit of Cox's Regression and Life Model, 10.2307/2530289
  5. Arjas Elja, A Graphical Method for Assessing Goodness of Fit in Cox's Proportional Hazards Model, 10.2307/2288942
  6. CAI ZONGWU, SUN YANQING, Local Linear Estimation for Time-Dependent Coefficients in Cox's Regression Models, 10.1111/1467-9469.00320
  7. Cao Ricardo, González-Manteiga Wenceslao, Goodness-of-fit tests for conditional models under censoring and truncation, 10.1016/j.jeconom.2007.08.011
  8. Qing Chen Ying, Accelerated Hazards Regression Model and Its Adequacy for Censored Survival Data, 10.1111/j.0006-341x.2001.00853.x
  9. Dabrowska Dorota M., Uniform Consistency of the Kernel Conditional Kaplan-Meier Estimate, 10.1214/aos/1176347261
  10. de Jong Peter, A central limit theorem for generalized quadratic forms, 10.1007/bf00354037
  11. GILL RICHARD, SCHUMACHER MARTIN, A simple test of the proportional hazards assumption, 10.1093/biomet/74.2.289
  12. González-Manteiga W., Cao R., Testing the hypothesis of a general linear model using nonparametric regression estimation, 10.1007/bf02562674
  13. Grigoletto Matteo, Akritas Michael G., Analysis of Covariance with Incomplete Data Via Semiparametric Model Transformations, 10.1111/j.0006-341x.1999.01177.x
  14. Hardle W., Mammen E., Comparing Nonparametric Versus Parametric Regression Fits, 10.1214/aos/1176349403
  15. Huffer Fred W., McKeague Ian W., Weighted Least Squares Estimation for Aalen's Additive Risk Model, 10.2307/2289721
  16. Iglesias Pérez C., González Manteiga W., Strong representation of a generalized product-limit estimator for truncated and censored data with some applications, 10.1080/10485259908832761
  17. Iglesias-Pérez C., The Annals of the Institute of Statistical Mathematics, 55, 331 (2003)
  18. Jung S-H, Regression analysis for long-term survival rate, 10.1093/biomet/83.1.227
  19. Kaplan E. L., Meier Paul, Nonparametric Estimation from Incomplete Observations, 10.2307/2281868
  20. Kauermann Göran, Penalized spline smoothing in multivariable survival models with varying coefficients, 10.1016/j.csda.2004.05.006
  21. Klein J. P., Survival Analysis: Techniques for Censored and Truncated Data (1997)
  22. Lambert, P., and Eilers, P.H.C. (2004), ‘Bayesian Survival Models with Smooth Time-Varying Coefficients using Penalized Poisson Regression’, Technical Report TR0435.
  23. Marzec L, On fitting Cox's regression model with time-dependent coefficients, 10.1093/biomet/84.4.901
  24. MCKEAGUE IAN W., SASIENI PETER D., A partly parametric additive risk model, 10.1093/biomet/81.3.501
  25. McKeague Ian W., Utikal Klaus J., Inference for a Nonlinear Counting Process Regression Model, 10.1214/aos/1176347745
  26. Murphy S. A., Scandinavian Journal of Statistics, 20, 35 (1993)
  27. Murphy S.A., Sen P.K., Time-dependent coefficients in a Cox-type regression model, 10.1016/0304-4149(91)90039-f
  28. Nan, B., and Lin, X. (2003), ‘A Varying-Coefficient Cox Model for the Effect of Age at a Marker Event on Age at Menopause’.
  29. Parzen Michael, Lipsitz Stuart R., A Global Goodness-of-Fit Statistic for Cox Regression Models, 10.1111/j.0006-341x.1999.00580.x
  30. Rossini A. J., Wei L. J., Ying Z., Checking adequacy of the semiparametric location shift model with censored data, 10.1007/bf00128572
  31. SCHOENFELD DAVID, Chi-squared goodness-of-fit tests for the proportional hazards regression model, 10.1093/biomet/67.1.145
  32. Silverman Bernard W., Weak and Strong Uniform Consistency of the Kernel Estimate of a Density and its Derivatives, 10.1214/aos/1176344076
  33. Subramanian Sundarraman, Parameter estimation in regression for long-term survival rate from censored data, 10.1016/s0378-3758(01)00084-2
  34. Subramanian Sundarraman, Survival-rate regression using kernel conditional Kaplan–Meier estimators, 10.1016/s0378-3758(03)00140-x
  35. Teodorescu, B. (2008), ‘Generalized Conditional Linear Models with Time-Varying Coefficients under Left Truncation and Right Censoring’, PhD thesis, Université catholique de Louvain, Belgium
  36. Teodorescu B., The Annals of the Institute of Statistical Mathematics (2009)
  37. Tian Lu, Zucker David, Wei L. J, On the Cox Model With Time-Varying Regression Coefficients, 10.1198/016214504000000845
  38. TSAI WEI-YANN, JEWELL NICHOLAS P., WANG MEI-CHENG, A note on the product-limit estimator under right censoring and left truncation, 10.1093/biomet/74.4.883
  39. Yang Song, Some Scale Estimators and Lack-of-Fit Tests for the Censored Two-Sample Accelerated Life Model, 10.2307/2533855
  40. Zucker David M., Karr Alan F., Nonparametric Survival Analysis with Time-Dependent Covariate Effects: A Penalized Partial Likelihood Approach, 10.1214/aos/1176347503