User menu

Twin building lattices do not have asymptotic cut-points

Bibliographic reference Caprace, Pierre-Emmanuel ; Dahmani, Francois ; Guirardel, Vincent. Twin building lattices do not have asymptotic cut-points. In: Geometriae Dedicata, Vol. 147, no. 1, p. 409-415 (2010)
Permanent URL
  1. Brink B., Howlett R.B.: A finiteness property and an automatic structure for Coxeter groups. Math. Ann. 296(1), 179–190 (1993)
  2. Bridson Martin R., Haefliger André, Metric Spaces of Non-Positive Curvature, ISBN:9783642083990, 10.1007/978-3-662-12494-9
  3. Caprace, P.-E., Fujiwara K.: Rank one isometries of buildinngs and quasi-morphisms of Kac–Moody groups. Preprint, to appear in GAFA (2008) doi: 10.1007/s00039-009-0042-2
  4. Caprace, P.-E., Rémy, B.: Non-distortion of twin building lattices. Preprint, to appear in Geom. Dedicata, (2009)
  5. Davis, M.: Buildings are CAT(0), Geometry and cohomology in group theory, Lond. Math. Soc. Lecture Note Ser., Cambridge University Press, pp. 108–123 (1998)
  6. Dranishnikov, A., Januszkiewicz, T.: Every Coxeter group acts amenably on a compact space. In: Proceedings of the 1999 Topology and Dynamics Conference (Salt Lake City, UT), vol. 24, pp. 135–141 (1999)
  7. Drutu, C., Mozes, S., Sapir, M.: Divergence in lattices in semisimple Lie groups and graphs of groups. Trans. Am. Math. Soc. (to appear) (2009) doi: 10.1090/S0002-9947-09-04882-X
  8. Floyd W.J.: Group completions and limit sets of Kleinian groups. Invent. Math. 57(3), 205–218 (1980)
  9. Karlsson A.: Free subgroups of groups with nontrivial Floyd boundary. Comm. Algebra 31, 5361–5376 (2003)
  10. Kleiner B., Leeb B.: Rigidity of quasi-isometries for symmetric spaces and Euclidean buildings. Inst. Hautes Études Sci. Publ. Math. 86, 115–197 (1997)
  11. Tits, J.: Twin buildings and groups of Kac–Moody type. Groups, combinatorics & geometry (Durham, 1990), pp. 249–286, Lond. Math. Soc. Lecture Note Ser., 165, Cambridge University Press, Cambridge, (1992)