User menu

Non-distortion of twin building lattices

Bibliographic reference Caprace, Pierre-Emmanuel ; Remy, Bertrand. Non-distortion of twin building lattices. In: Geometriae Dedicata, Vol. 147, no. 1, p. 397-408 (2010)
Permanent URL
  1. Abramenko, P., Brown, K.S.: Buildings, Graduate Texts in Mathematics, vol. 248. Springer, New York, Theory and applications (2008)
  2. Burillo J., Cleary S., Stein M.I.: Metrics and embeddings of generalizations of Thompson’s group F. Trans. Amer. Math. Soc. 353(4), 1677–1689 (2001) (electronic)
  3. Bridson Martin R., Haefliger André, Metric Spaces of Non-Positive Curvature, ISBN:9783642083990, 10.1007/978-3-662-12494-9
  4. Burger M., Mozes S.: Lattices in product of trees. Inst. Hautes Études Sci. Publ. Math. 92, 151–194 (2001)
  5. Bourbaki N.: Éléments de Mathématique. Topologie générale. Chapitres 1 à 4. Springer, New York (2007)
  6. Brin M.G.: Higher-dimensional Thompson groups. Geom. Dedicata 108, 163–192 (2004)
  7. Brown, K.S.: The geometry of finitely presented infinite simple groups, Algorithms and classification in combinatorial group theory (Berkeley, CA, 1989). Math. Sci. Res. Inst. Publ., vol. 23, pp. 121–136. Springer, New York (1992)
  8. Baumgartner U., Rémy B., Willis G.A.: Flat rank of automorphism groups of buildings. Transformation Groups 12, 413–436 (2007)
  9. Carbone Lisa, Garland Howard, Lattices in Kac-Moody groups, 10.4310/mrl.1999.v6.n4.a6
  10. Caprace P.-E., Haglund F.: On geometrical flats in the CAT(0)-realization of Coxeter groups and Tits buildings. Canad. J. Math. 61, 740–761 (2009)
  11. Caprace, P.-E., Monod, N.: Isometry groups of non-positively curved spaces: discrete subgroups, Preprint, to appear in J. Topology (doi: 10.1112/jtopol/jtp027 ) (2008)
  12. Caprace P.-E., Rémy B.: Simplicity and superrigidity of twin building lattices. Invent. Math. 176(1), 169–221 (2009)
  13. Dymara, J., Schick, T.: Buildings have finite asymptotic dimension, Preprint, arXiv:math/ 0703199v1 (2007)
  14. Gelander T., Karlsson A., Margulis G.A.: Superrigidity, generalized harmonic maps and uniformly convex spaces. Geom. Funct. Anal. 17, 1524–1550 (2008)
  15. Gramlich R., Mühlherr B.: Lattices from involutions of Kac–Moody groups. Oberwolfach Rep. 5, 139–140 (2008)
  16. Higman, G.: Finitely presented infinite simple groups, Department of Pure Mathematics, Department of Mathematics, I.A.S. Australian National University, Canberra, 1974, Notes on Pure Mathematics, No. 8 (1974)
  17. Kleiner B.: The local structure of length spaces with curvature bounded above. Math. Z. 231, 409–456 (1999)
  18. Krammer D.: The conjugacy problem for Coxeter groups. Groups Geom. Dyn. 3(1), 71–171 (2009)
  19. Lubotzky A., Mozes S., Raghunathan M.S.: The word and Riemannian metrics on lattices of semisimple groups. Inst. Hautes Études Sci. Publ. Math. 91, 5–53 (2001)
  20. Margulis Gregori Aleksandrovitch, Discrete Subgroups of Semisimple Lie Groups, ISBN:9783642057212, 10.1007/978-3-642-51445-6
  21. Monod N.: Continuous bounded cohomology of locally compact groups, Lecture Notes in Mathematics, vol. 1758. Springer, New York (2001)
  22. Monod N.: Superrigidity for irreducible lattices and geometric splitting. J. Amer. Math. Soc. 19, 781–814 (2006)
  23. Papasoglu P.: Homogeneous trees are bi-Lipschitz equivalent. Geom. Dedicata 54, 301–306 (1995)
  24. Rémy Bertrand, Construction de réseaux en théorie de Kac-Moody, 10.1016/s0764-4442(00)80044-0
  25. Rémy B.: Integrability of induction cocycles for Kac–Moody groups. Math. Ann. 333, 29–43 (2005)
  26. Röver Claas E.: Constructing finitely presented simple groups that contain Grigorchuk groups. J. Algebra 220(1), 284–313 (1999)
  27. Scott, E.A.: A tour around finitely presented infinite simple groups, Algorithms and classification in combinatorial group theory (Berkeley, CA, 1989). Math. Sci. Res. Inst. Publ., vol. 23, pp. 83–119. Springer, New York (1992)
  28. Serre, J.-P.: Cohomologie des groupes discrets, Prospects in mathematics (Proc. Sympos., Princeton Univ., Princeton, N.J., 1970), Princeton Univ. Press, Princeton, N.J., 1971, pp. 77–169. Ann. of Math. Studies, No. 70
  29. Shalom Y.: Rigidity of commensurators and irreducible lattices. Invent. Math. 141, 1–54 (2000)
  30. Tits J.: Théorie des groupes. Ann. Collège France 89(1988/89), 81–96 (1990)