User menu

Implicit double shift QR-algorithm for companion matrices

Bibliographic reference Van Barel, Marc ; Vandebril, Raf ; Van Dooren, Paul ; Frederix, Katrijn. Implicit double shift QR-algorithm for companion matrices. In: Numerische Mathematik, Vol. 116, no. 2, p. 177-212 (2010)
Permanent URL http://hdl.handle.net/2078.1/33663
  1. Barnett, S.: Polynomials and linear control systems. Monographs and Textbooks in Pure and Applied Mathematics. Marcel Dekker, Inc., New York (1983)
  2. Bindel, D., Chandrasekaran, S., Demmel, J.W., Garmire, D., Gu, M.: A fast and stable nonsymmetric eigensolver for certain structured matrices. Technical report, Department of Computer Science, University of California, Berkeley, California, USA, May (2005)
  3. Bindel D., Demmel J.W., Kahan W., Marques O.A.: On computing Givens rotations reliably and efficiently. ACM Trans. Math. Softw. 28(2), 206–238 (2002)
  4. Bini, D.A., Boito, P., Eidelman, Y., Gemignani, L., Gohberg, I.C.: A fast QR eigenvalue method for a class of structured matrices. Linear Algebra Appl. (2009, accepted). doi: 10.1016/j.laa.2009.08.003
  5. Bini D.A., Daddi F., Gemignani L.: On the shifted QR iteration applied to companion matrices. Electron. Trans. Numer. Anal. 18, 137–152 (2004)
  6. Bini D.A., Eidelman Y., Gemignani L., Gohberg I.C.: Fast QR eigenvalue algorithms for Hessenberg matrices which are rank-one perturbations of unitary matrices. SIAM J. Matrix Anal. Appl. 29(2), 566–585 (2007)
  7. Bini D.A., Gemignani L., Pan V.Y.: Fast and stable QR eigenvalue algorithms for generalized companion matrices and secular equations. Numer. Math. 100(3), 373–408 (2005)
  8. Chandrasekaran S., Gu M., Xia J., Zhu J.: A fast QR algorithm for companion matrices. Oper. Theory Adv. Appl. 179, 111–143 (2007)
  9. Delvaux, S., Frederix, K., Van Barel, M.: An algorithm for computing the eigenvalues of block companion matrices. Technical Report TW538, Department of Computer Science, Katholieke Universiteit Leuven, April (2008)
  10. Delvaux, S., Van Barel, M.: The explicit QR-algorithm for rank structured matrices. Technical Report TW459, Department of Computer Science, Katholieke Universiteit Leuven, Celestijnenlaan 200A, 3000 Leuven (Heverlee), Belgium, May (2006)
  11. Delvaux S., Van Barel M.: A QR-based solver for rank structured matrices. SIAM J. Matrix Anal. Appl. 30(2), 464–490 (2008)
  12. Edelman Alan, Murakami H., Polynomial roots from companion matrix eigenvalues, 10.1090/s0025-5718-1995-1262279-2
  13. Eidelman Y., Gohberg I.C.: On a new class of structured matrices. Integral Equ. Oper. Theory 34, 293–324 (1999)
  14. Eidelman Y., Gohberg I.C., Olshevsky V.: The QR iteration method for Hermitian quasiseparable matrices of an arbitrary order. Linear Algebra Appl. 404, 305–324 (2005)
  15. Fiedler M., Markham T.L.: Completing a matrix when certain entries of its inverse are specified. Linear Algebra Appl. 74, 225–237 (1986)
  16. Golub G.H., Van Loan C.F.: Matrix Computations, 3rd edn. Johns Hopkins University Press, Baltimore (1996)
  17. Vandebril R., Van Barel M., Golub G.H., Mastronardi N.: A bibliography on semiseparable matrices. Calcolo 42(3–4), 249–270 (2005)
  18. Vandebril R., Van Barel M., Mastronardi N.: An implicit QR-algorithm for symmetric semiseparable matrices. Numer. Linear Algebra Appl. 12(7), 625–658 (2005)
  19. Vandebril R., Van Barel M., Mastronardi N.: A note on the representation and definition of semiseparable matrices. Numer. Linear Algebra Appl. 12(8), 839–858 (2005)
  20. Vandebril R., Van Barel M., Mastronardi N.: Matrix Computations and Semiseparable Matrices: Eigenvalue and Singular Value Methods, vol. II. Johns Hopkins University Press, Baltimore (2008)
  21. Vandebril R., Van Barel M., Mastronardi N.: A parallel QR-factorization/solver of structured rank matrices. Electron. Trans. Numer. Anal. 30, 144–167 (2008)