User menu

Controlling Edge Morphology in Graphene Layers Using Electron Irradiation: From Sharp Atomic Edges to Coalesced Layers Forming Loops

Bibliographic reference Cruz-Silva, E. ; Botello Mendez, Andrés Rafael ; Barnett, Z. M. ; Jia, X. ; Dresselhaus, M. S. ; et. al. Controlling Edge Morphology in Graphene Layers Using Electron Irradiation: From Sharp Atomic Edges to Coalesced Layers Forming Loops. In: Physical Review Letters, Vol. 105, no. 4 (2010)
Permanent URL
  1. Novoselov K. S., Electric Field Effect in Atomically Thin Carbon Films, 10.1126/science.1102896
  2. Krasheninnikov A. V., Banhart F., Engineering of nanostructured carbon materials with electron or ion beams, 10.1038/nmat1996
  3. Huang J. Y., Ding F., Yakobson B. I., Lu P., Qi L., Li J., In situ observation of graphene sublimation and multi-layer edge reconstructions, 10.1073/pnas.0905193106
  4. Warner Jamie H., Rümmeli Mark H., Ge Ling, Gemming Thomas, Montanari Barbara, Harrison Nicholas M., Büchner Bernd, Briggs G. Andrew D., Structural transformations in graphene studied with high spatial and temporal resolution, 10.1038/nnano.2009.194
  5. da Silva Antônio J. R., Fazzio A., Antonelli Alex, Bundling up Carbon Nanotubes through Wigner Defects, 10.1021/nl050457c
  6. Telling Rob H., Ewels Chris P., El-Barbary Ahlam A., Heggie Malcolm I., Wigner defects bridge the graphite gap, 10.1038/nmat876
  7. Koskinen Pekka, Malola Sami, Häkkinen Hannu, Evidence for graphene edges beyond zigzag and armchair, 10.1103/physrevb.80.073401
  8. Girit C. O., Meyer J. C., Erni R., Rossell M. D., Kisielowski C., Yang L., Park C.-H., Crommie M. F., Cohen M. L., Louie S. G., Zettl A., Graphene at the Edge: Stability and Dynamics, 10.1126/science.1166999
  9. Rodriguez-Manzo Julio A., Banhart Florian, Creation of Individual Vacancies in Carbon Nanotubes by Using an Electron Beam of 1 Å Diameter, 10.1021/nl900463u
  10. Terrones M., Coalescence of Single-Walled Carbon Nanotubes, 10.1126/science.288.5469.1226
  11. Terrones M., Banhart F., Grobert N., Charlier J.-C., Terrones H., Ajayan P. M., Molecular Junctions by Joining Single-Walled Carbon Nanotubes, 10.1103/physrevlett.89.075505
  12. Hernández E., Meunier V., Smith B. W., Rurali R., Terrones H., Buongiorno Nardelli M., Terrones M., Luzzi D. E., Charlier J.-C., Fullerene Coalescence in Nanopeapods:  A Path to Novel Tubular Carbon, 10.1021/nl034283f
  13. Jia X., Hofmann M., Meunier V., Sumpter B. G., Campos-Delgado J., Romo-Herrera J. M., Son H., Hsieh Y.-P., Reina A., Kong J., Terrones M., Dresselhaus M. S., Controlled Formation of Sharp Zigzag and Armchair Edges in Graphitic Nanoribbons, 10.1126/science.1166862
  14. Engelund M., Fürst J. A., Jauho A. P., Brandbyge M., Localized Edge Vibrations and Edge Reconstruction by Joule Heating in Graphene Nanostructures, 10.1103/physrevlett.104.036807
  15. Liu Zheng, Suenaga Kazu, Harris Peter J. F., Iijima Sumio, Open and Closed Edges of Graphene Layers, 10.1103/physrevlett.102.015501
  16. Jia Xiaoting, Campos-Delgado Jessica, Gracia-Espino Edgar Eduardo, Hofmann Mario, Muramatsu Hiroyuki, Kim Yoong Ahm, Hayashi Takuya, Endo Morinobu, Kong Jing, Terrones Mauricio, Dresselhaus Mildred S., Loop formation in graphitic nanoribbon edges using furnace heating or Joule heating, 10.1116/1.3148829
  17. Kresse G., Furthmüller J., Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set, 10.1016/0927-0256(96)00008-0
  18. Kresse G., Furthmüller J., Efficient iterative schemes forab initiototal-energy calculations using a plane-wave basis set, 10.1103/physrevb.54.11169
  19. Blöchl P. E., Projector augmented-wave method, 10.1103/physrevb.50.17953
  20. Kresse G., Joubert D., From ultrasoft pseudopotentials to the projector augmented-wave method, 10.1103/physrevb.59.1758
  21. Ceperley D. M., Alder B. J., Ground State of the Electron Gas by a Stochastic Method, 10.1103/physrevlett.45.566
  22. Troullier N., Martins José Luriaas, Efficient pseudopotentials for plane-wave calculations, 10.1103/physrevb.43.1993
  23. Nosé Shuichi, A unified formulation of the constant temperature molecular dynamics methods, 10.1063/1.447334
  24. Aradi B., Hourahine B., Frauenheim Th., DFTB+, a Sparse Matrix-Based Implementation of the DFTB Method†, 10.1021/jp070186p
  25. Elstner M., Porezag D., Jungnickel G., Elsner J., Haugk M., Frauenheim Th., Suhai S., Seifert G., Self-consistent-charge density-functional tight-binding method for simulations of complex materials properties, 10.1103/physrevb.58.7260
  26. Luschtinetz Regina, Oliveira Augusto F., Frenzel Johannes, Joswig Jan-Ole, Seifert Gotthard, Duarte Helio A., Adsorption of phosphonic and ethylphosphonic acid on aluminum oxide surfaces, 10.1016/j.susc.2008.01.035
  27. Meunier Vincent, Nardelli Marco Buongiorno, Bernholc J., Zacharia Thomas, Charlier Jean-Christophe, Intrinsic electron transport properties of carbon nanotube Y-junctions, 10.1063/1.1533842
  28. Ewels C. P., Telling R. H., El-Barbary A. A., Heggie M. I., Briddon P. R., Metastable Frenkel Pair Defect in Graphite: Source of Wigner Energy?, 10.1103/physrevlett.91.025505
  29. Stone A.J., Wales D.J., Theoretical studies of icosahedral C60 and some related species, 10.1016/0009-2614(86)80661-3
  30. P. A. Thrower, Chem. Phys. Carbon, 5, 261 (1969)
  31. Koskinen Pekka, Malola Sami, Häkkinen Hannu, Self-Passivating Edge Reconstructions of Graphene, 10.1103/physrevlett.101.115502