User menu

Insertion of epicatechin gallate into the cytoplasmic membrane of methicillin-resistant Staphylococcus aureus disrupts penicillin-binding protein (PBP) 2a-mediated beta-lactam resistance by delocalizing PBP2.

Bibliographic reference Bernal, Patricia ; Lemaire, Sandrine ; Pinho, Mariana G. ; Mobashery, Shahriar ; Hinds, Jason ; et. al. Insertion of epicatechin gallate into the cytoplasmic membrane of methicillin-resistant Staphylococcus aureus disrupts penicillin-binding protein (PBP) 2a-mediated beta-lactam resistance by delocalizing PBP2.. In: Journal of Biological Chemistry, Vol. 285, no. 31, p. 24055-65 (2010)
Permanent URL
  1. Taylor, Food Sci. Technol. Bull., 2, 71 (2005)
  2. Benfield T., Espersen F., Frimodt-Møller N., Jensen A.G., Larsen A.R., Pallesen L.V., Skov R., Westh H., Skinhøj P., Increasing incidence but decreasing in-hospital mortality of adult Staphylococcus aureus bacteraemia between 1981 and 2000, 10.1111/j.1469-0691.2006.01589.x
  3. Stapleton Paul D, Shah Saroj, Anderson James C, Hara Yukihiko, Hamilton-Miller Jeremy M.T, Taylor Peter W, Modulation of β-lactam resistance in Staphylococcus aureus by catechins and gallates, 10.1016/j.ijantimicag.2003.09.027
  4. Stapleton P. D., Shah S., Ehlert K., Hara Y., Taylor P. W., The beta-lactam-resistance modifier (-)-epicatechin gallate alters the architecture of the cell wall of Staphylococcus aureus, 10.1099/mic.0.2007/007807-0
  5. Blanco A. R., Sudano-Roccaro A., Spoto G. C., Nostro A., Rusciano D., Epigallocatechin Gallate Inhibits Biofilm Formation by Ocular Staphylococcal Isolates, 10.1128/aac.49.10.4339-4343.2005
  6. Hamilton-Miller J.M.T, Shah S, Disorganization of cell division of methicillin-resistantStaphylococcus aureusby a component of tea (Camellia sinensis): a study by electron microscopy, 10.1111/j.1574-6968.1999.tb13698.x
  7. Caturla N, The relationship between the antioxidant and the antibacterial properties of galloylated catechins and the structure of phospholipid model membranes, 10.1016/s0891-5849(02)01366-7
  8. KAJIYA Katsuko, KUMAZAWA Shigenori, NAKAYAMA Tsutomu, Steric Effects on Interaction of Tea Catechins with Lipid Bilayers, 10.1271/bbb.65.2638
  9. KAJIYA Katsuko, KUMAZAWA Shigenori, NAKAYAMA Tsutomu, Effects of External Factors on the Interaction of Tea Catechins with Lipid Bilayers, 10.1271/bbb.66.2330
  10. KUMAZAWA Shigenori, KAJIYA Katsuko, NAITO Akira, SAITÔ Hazime, TUZI Satoru, TANIO Michikazu, SUZUKI Masayuki, NANJO Fumio, SUZUKI Eri, NAKAYAMA Tsutomu, Direct Evidence of Interaction of a Green Tea Polyphenol, Epigallocatechin Gallate, with Lipid Bilayers by Solid-state Nuclear Magnetic Resonance, 10.1271/bbb.68.1743
  11. Stapleton P. D., Shah S., Hara Y., Taylor P. W., Potentiation of Catechin Gallate-Mediated Sensitization of Staphylococcus aureus to Oxacillin by Nongalloylated Catechins, 10.1128/aac.50.2.752-755.2006
  12. Deurenberg Ruud H., Stobberingh Ellen E., The evolution of Staphylococcus aureus, 10.1016/j.meegid.2008.07.007
  13. Short, J. Bacteriol., 108, 219 (1971)
  14. Mukhopadhyay K., Whitmire W., Xiong Y. Q., Molden J., Jones T., Peschel A., Staubitz P., Adler-Moore J., McNamara P. J., Proctor R. A., Yeaman M. R., Bayer A. S., In vitro susceptibility of Staphylococcus aureus to thrombin-induced platelet microbicidal protein-1 (tPMP-1) is influenced by cell membrane phospholipid composition and asymmetry, 10.1099/mic.0.
  15. Haest C.W.M., De Gier J., Op Den Kamp ]J.A.F., Bartels P., Van Deenen L.L.M., Changes in permeability of Staphylococcus aureus and derived liposomes with varying lipid composition, 10.1016/0005-2736(72)90385-9
  16. Bernal Patricia, Zloh Mire, Taylor Peter W., Disruption of d-alanyl esterification of Staphylococcus aureus cell wall teichoic acid by the β-lactam resistance modifier (−)-epicatechin gallate, 10.1093/jac/dkp094
  17. Neuhaus F. C., Baddiley J., A Continuum of Anionic Charge: Structures and Functions of D-Alanyl-Teichoic Acids in Gram-Positive Bacteria, 10.1128/mmbr.67.4.686-723.2003
  18. Pinho Mariana G., Errington Jeff, Dispersed mode of Staphylococcus aureus cell wall synthesis in the absence of the division machinery : FtsZ-independent cell wall synthesis in S. aureus, 10.1046/j.1365-2958.2003.03719.x
  19. Pinho Mariana G., Errington Jeff, Recruitment of penicillin-binding protein PBP2 to the division site of Staphylococcus aureus is dependent on its transpeptidation substrates : PBP2 localization in S. aureus, 10.1111/j.1365-2958.2004.04420.x
  20. Pinho M. G., de Lencastre H., Tomasz A., An acquired and a native penicillin-binding protein cooperate in building the cell wall of drug-resistant staphylococci, 10.1073/pnas.191260798
  21. Fuda Cosimo, Hesek Dusan, Lee Mijoon, Morio Ken-ichiro, Nowak Thomas, Mobashery Shahriar, Activation for Catalysis of Penicillin-Binding Protein 2a from Methicillin-ResistantStaphylococcusaureusby Bacterial Cell Wall, 10.1021/ja0434376
  22. PINHO MARIANA G., LUDOVICE ANA MADALENA, WU SHANGWEI, De LENCASTRE HERMINIA, Massive Reduction in Methicillin Resistance by Transposon Inactivation of the Normal PBP2 in a Methicillin-Resistant Strain ofStaphylococcus aureus, 10.1089/mdr.1997.3.409
  23. Klevens R. Monina, Invasive Methicillin-Resistant Staphylococcus aureus Infections in the United States, 10.1001/jama.298.15.1763
  24. Witney A. A., Marsden G. L., Holden M. T. G., Stabler R. A., Husain S. E., Vass J. K., Butcher P. D., Hinds J., Lindsay J. A., Design, Validation, and Application of a Seven-Strain Staphylococcus aureus PCR Product Microarray for Comparative Genomics, 10.1128/aem.71.11.7504-7514.2005
  25. Doyle M., Feuerbaum E.-A., Fox K. R., Hinds J., Thurston D. E., Taylor P. W., Response of Staphylococcus aureus to subinhibitory concentrations of a sequence-selective, DNA minor groove cross-linking pyrrolobenzodiazepine dimer, 10.1093/jac/dkp325
  27. Ames, J. Bacteriol., 95, 833 (1968)
  28. Bernal Patricia, Muñoz-Rojas Jesús, Hurtado Ana, Ramos Juan L., Segura Ana, A Pseudomonas putida cardiolipin synthesis mutant exhibits increased sensitivity to drugs related to transport functionality, 10.1111/j.1462-2920.2006.01236.x
  29. Fuda Cosimo, Suvorov Maxim, Vakulenko Sergei B., Mobashery Shahriar, The Basis for Resistance to β-Lactam Antibiotics by Penicillin-binding Protein 2a of Methicillin-resistantStaphylococcus aureus, 10.1074/jbc.m403589200
  30. Lemaire Sandrine, Fuda Cosimo, Van Bambeke Françoise, Tulkens Paul M., Mobashery Shahriar, Restoration of Susceptibility of Methicillin-resistantStaphylococcus aureusto β-Lactam Antibiotics by Acidic pH : ROLE OF PENICILLIN-BINDING PROTEIN PBP 2a, 10.1074/jbc.m800079200
  31. Novick Richard P., Autoinduction and signal transduction in the regulation of staphylococcal virulence : Regulation of staphylococcus virulence, 10.1046/j.1365-2958.2003.03526.x
  32. Utaida S., Genome-wide transcriptional profiling of the response of Staphylococcus aureus to cell-wall-active antibiotics reveals a cell-wall-stress stimulon, 10.1099/mic.0.26426-0
  33. Kuroda Makoto, Kuroda Hiroko, Oshima Taku, Takeuchi Fumihiko, Mori Hirotada, Hiramatsu Keiichi, Two-component system VraSR positively modulates the regulation of cell-wall biosynthesis pathway in Staphylococcus aureus : DNA microarray analyses reveal the regulatory network via VraSR two-component system, 10.1046/j.1365-2958.2003.03599.x
  34. McAleese F., Wu S. W., Sieradzki K., Dunman P., Murphy E., Projan S., Tomasz A., Overexpression of Genes of the Cell Wall Stimulon in Clinical Isolates of Staphylococcus aureus Exhibiting Vancomycin-Intermediate- S. aureus-Type Resistance to Vancomycin, 10.1128/jb.188.3.1120-1133.2006
  35. Gordon Rachel J., Lowy Franklin D., Pathogenesis of Methicillin‐ResistantStaphylococcus aureusInfection, 10.1086/533591
  36. Muthaiyan A., Silverman J. A., Jayaswal R. K., Wilkinson B. J., Transcriptional Profiling Reveals that Daptomycin Induces the Staphylococcus aureus Cell Wall Stress Stimulon and Genes Responsive to Membrane Depolarization, 10.1128/aac.01121-07
  37. Sass Vera, Pag Ulrike, Tossi Alessandro, Bierbaum Gabriele, Sahl Hans-Georg, Mode of action of human β-defensin 3 against Staphylococcus aureus and transcriptional analysis of responses to defensin challenge, 10.1016/j.ijmm.2008.01.011
  38. Wilkinson, Curr. Med. Chem., 4, 259 (2005)
  39. Trevors J.T., Fluorescent probes for bacterial cytoplasmic membrane research, 10.1016/s0165-022x(03)00076-9
  40. LENNARZ W.J., Lipid Metabolism in the Bacteria, Advances in Lipid Research (1966) ISBN:9781483199405 p.175-225, 10.1016/b978-1-4831-9940-5.50012-0
  41. Denich T.J, Beaudette L.A, Lee H, Trevors J.T, Effect of selected environmental and physico-chemical factors on bacterial cytoplasmic membranes, 10.1016/s0167-7012(02)00155-0
  42. SUTTON GEOFFREY C., QUINN PETER J., RUSSELL NICHOLAS J., Changes in phospholipid composition of bacterial membranes prevent formation of non-bilayer phasesin vitroandin vivoby high solute concentrations, 10.1042/bst0180950
  43. Chung M., Antignac A., Kim C., Tomasz A., Comparative Study of the Susceptibilities of Major Epidemic Clones of Methicillin-Resistant Staphylococcus aureus to Oxacillin and to the New Broad-Spectrum Cephalosporin Ceftobiprole, 10.1128/aac.00266-08
  44. Stapleton Paul D., Gettert Jasmine, Taylor Peter W., Epicatechin gallate, a component of green tea, reduces halotolerance in Staphylococcus aureus, 10.1016/j.ijfoodmicro.2006.06.005
  45. Anandh Babu Pon, Liu Dongmin, Green Tea Catechins and Cardiovascular Health: An Update, 10.2174/092986708785132979
  46. Eliopoulos George M., Microbiology of drugs for treating multiply drug-resistant Gram-positive bacteria, 10.1016/s0163-4453(09)60004-9
  47. HASHIMOTO Toshihiko, KUMAZAWA Shigenori, NANJO Fumio, HARA Yukihiko, NAKAYAMA Tsutomu, Interaction of Tea Catechins with Lipid Bilayers Investigated with Liposome Systems, 10.1271/bbb.63.2252
  48. Baltz Richard H, Daptomycin: mechanisms of action and resistance, and biosynthetic engineering, 10.1016/j.cbpa.2009.02.031
  49. Ernst Christoph M., Staubitz Petra, Mishra Nagendra N., Yang Soo-Jin, Hornig Gabriele, Kalbacher Hubert, Bayer Arnold S., Kraus Dirk, Peschel Andreas, The Bacterial Defensin Resistance Protein MprF Consists of Separable Domains for Lipid Lysinylation and Antimicrobial Peptide Repulsion, 10.1371/journal.ppat.1000660
  50. Peschel Andreas, Jack Ralph W., Otto Michael, Collins L. Vincent, Staubitz Petra, Nicholson Graeme, Kalbacher Hubert, Nieuwenhuizen Willem F., Jung Günther, Tarkowski Andrej, van Kessel Kok P.M., van Strijp Jos A.G., Staphylococcus aureusResistance to Human Defensins and Evasion of Neutrophil Killing via the Novel Virulence Factor Mprf Is Based on Modification of Membrane Lipids with l-Lysine, 10.1084/jem.193.9.1067
  51. Shah S., Stapleton P.D., Taylor P.W., The polyphenol (−)-epicatechin gallate disrupts the secretion of virulence-related proteins by Staphylococcus aureus : ECg disrupts secretion in S. aureus, 10.1111/j.1472-765x.2007.02296.x
  52. KUMAMOTO Midori, SONDA Tamiyoshi, NAGAYAMA Kinuyo, TABATA Masaaki, Effects of pH and Metal Ions on Antioxidative Activities of Catechins, 10.1271/bbb.65.126
  53. Scheffers D.-J., Pinho M. G., Bacterial Cell Wall Synthesis: New Insights from Localization Studies, 10.1128/mmbr.69.4.585-607.2005
  54. Zapun André, Vernet Thierry, Pinho Mariana G., The different shapes of cocci, 10.1111/j.1574-6976.2007.00098.x
  55. Pereira P. M., Filipe S. R., Tomasz A., Pinho M. G., Fluorescence Ratio Imaging Microscopy Shows Decreased Access of Vancomycin to Cell Wall Synthetic Sites in Vancomycin-Resistant Staphylococcus aureus, 10.1128/aac.00431-07
  56. Shakil S., Akram M., Khan A.U., Tigecycline: A Critical Update, 10.1179/joc.2008.20.4.411
  57. Sorlozano A., Gutierrez J., Martinez T., Yuste M. E., Perez-Lopez J. A., Vindel A., Guillen J., Boquete T., Detection of new mutations conferring resistance to linezolid in glycopeptide-intermediate susceptibility Staphylococcus hominis subspecies hominis circulating in an intensive care unit, 10.1007/s10096-009-0823-4
  58. Martínez José L., Baquero Fernando, Andersson Dan I., Predicting antibiotic resistance, 10.1038/nrmicro1796
  59. Taylor P. W. Bernal P. Zelmer A. (2009) Antibiotic Resistance: Causes and Risk Factors, Mechanisms and Alternatives, pp. 43–78, Nova Science Publishers, Hauppauge, NY