User menu

Expression of miR-33 from an SREBP2 intron inhibits cholesterol export and fatty acid oxidation

Bibliographic reference Gerin, Isabelle ; Clerbaux, Laure-Alix ; Haumont, Olivier ; Lanthier, Nicolas ; Das, Arun K ; et. al. Expression of miR-33 from an SREBP2 intron inhibits cholesterol export and fatty acid oxidation. In: Journal of Biological Chemistry, Vol. 285, no. 44, p. 33652-33661 (2010)
Permanent URL
  1. Eulalio A., Huntzinger E., Nishihara T., Rehwinkel J., Fauser M., Izaurralde E., Deadenylation is a widespread effect of miRNA regulation, 10.1261/rna.1399509
  2. HORTON J.D., GOLDSTEIN J.L., BROWN M.S., SREBPs: Transcriptional Mediators of Lipid Homeostasis, 10.1101/sqb.2002.67.491
  3. Rajewsky Nikolaus, microRNA target predictions in animals, 10.1038/ng1798
  4. Bartel David P., MicroRNAs: Target Recognition and Regulatory Functions, 10.1016/j.cell.2009.01.002
  5. Krützfeldt Jan, Rajewsky Nikolaus, Braich Ravi, Rajeev Kallanthottathil G., Tuschl Thomas, Manoharan Muthiah, Stoffel Markus, Silencing of microRNAs in vivo with ‘antagomirs’, 10.1038/nature04303
  6. Ebert Margaret S, Neilson Joel R, Sharp Phillip A, MicroRNA sponges: competitive inhibitors of small RNAs in mammalian cells, 10.1038/nmeth1079
  7. Tubb Matthew R., Smith Loren E., Davidson W. Sean, Purification of recombinant apolipoproteins A-I and A-IV and efficient affinity tag cleavage by tobacco etch virus protease, 10.1194/jlr.d900003-jlr200
  8. Folch, J. Biol. Chem., 226, 497 (1957)
  9. White Thayer, Bursten Stuart, Federighi David, Lewis Robert A., Nudelman Edward, High-Resolution Separation and Quantification of Neutral Lipid and Phospholipid Species in Mammalian Cells and Sera by Multi-One-Dimensional Thin-Layer Chromatography, 10.1006/abio.1997.2545
  10. Keller Pernille, Petrie John T., De Rose Paul, Gerin Isabelle, Wright Wendy S., Chiang Shian-Huey, Nielsen Anders R., Fischer Christian P., Pedersen Bente K., MacDougald Ormond A., Fat-specific Protein 27 Regulates Storage of Triacylglycerol, 10.1074/jbc.m708323200
  11. Sambrook J. Russell D. W. (2001) Molecular Cloning: A Laboratory Manual, 3rd Ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY
  12. Horton Jay D., Goldstein Joseph L., Brown Michael S., SREBPs: activators of the complete program of cholesterol and fatty acid synthesis in the liver, 10.1172/jci200215593
  13. Grimson Andrew, Farh Kyle Kai-How, Johnston Wendy K., Garrett-Engele Philip, Lim Lee P., Bartel David P., MicroRNA Targeting Specificity in Mammals: Determinants beyond Seed Pairing, 10.1016/j.molcel.2007.06.017
  14. Krek Azra, Grün Dominic, Poy Matthew N, Wolf Rachel, Rosenberg Lauren, Epstein Eric J, MacMenamin Philip, da Piedade Isabelle, Gunsalus Kristin C, Stoffel Markus, Rajewsky Nikolaus, Combinatorial microRNA target predictions, 10.1038/ng1536
  15. Lewis Benjamin P., Burge Christopher B., Bartel David P., Conserved Seed Pairing, Often Flanked by Adenosines, Indicates that Thousands of Human Genes are MicroRNA Targets, 10.1016/j.cell.2004.12.035
  16. Maragkakis Manolis, Alexiou Panagiotis, Papadopoulos Giorgio L, Reczko Martin, Dalamagas Theodore, Giannopoulos George, Goumas George, Koukis Evangelos, Kourtis Kornilios, Simossis Victor A, Sethupathy Praveen, Vergoulis Thanasis, Koziris Nectarios, Sellis Timos, Tsanakas Panagiotis, Hatzigeorgiou Artemis G, Accurate microRNA target prediction correlates with protein repression levels, 10.1186/1471-2105-10-295
  17. Repa J. J., Regulation of Absorption and ABC1-Mediated Efflux of Cholesterol by RXR Heterodimers, 10.1126/science.289.5484.1524
  18. Venkateswaran A., Laffitte B. A., Joseph S. B., Mak P. A., Wilpitz D. C., Edwards P. A., Tontonoz P., Control of cellular cholesterol efflux by the nuclear oxysterol receptor LXRalpha, 10.1073/pnas.200367697
  19. Tall Alan R., Yvan-Charvet Laurent, Terasaka Naoki, Pagler Tamara, Wang Nan, HDL, ABC Transporters, and Cholesterol Efflux: Implications for the Treatment of Atherosclerosis, 10.1016/j.cmet.2008.03.001
  20. BONNEFONT J, Carnitine palmitoyltransferases 1 and 2: biochemical, molecular and medical aspects, 10.1016/j.mam.2004.06.004
  21. Saggerson David, Malonyl-CoA, a Key Signaling Molecule in Mammalian Cells, 10.1146/annurev.nutr.28.061807.155434
  22. Wanders R.J.A., Ferdinandusse S., Brites P., Kemp S., Peroxisomes, lipid metabolism and lipotoxicity, 10.1016/j.bbalip.2010.01.001
  23. Goldstein Joseph L., DeBose-Boyd Russell A., Brown Michael S., Protein Sensors for Membrane Sterols, 10.1016/j.cell.2005.12.022
  24. Eaton S., Bursby T., Middleton B., Pourfarzam M., Mills K., Johnson A. W., Bartlecc K., The mitochondrial trifunctional protein: centre of a β-oxidation metabolon?, 10.1042/bst0280177
  25. Ibdah Jamal A., Paul Hyacinth, Zhao Yiwen, Binford Scott, Salleng Ken, Cline Mark, Matern Dietrich, Bennett Michael J., Rinaldo Piero, Strauss Arnold W., Lack of mitochondrial trifunctional protein in mice causes neonatal hypoglycemia and sudden death, 10.1172/jci12590
  26. Ibdah Jamal A., Perlegas Peter, Zhao Yiwen, Angdisen Jerry, Borgerink Hermina, Shadoan Melanie K., Wagner Janice D., Matern Dietrich, Rinaldo Piero, Cline J. Mark, Mice Heterozygous for a Defect in Mitochondrial Trifunctional Protein Develop Hepatic Steatosis and Insulin Resistance, 10.1053/j.gastro.2005.02.001
  27. Kao H.-J., Cheng C.-F., Chen Y.-H., Hung S.-I., Huang C.-C., Millington D., Kikuchi T., Wu J.-Y., Chen Y.-T., ENU mutagenesis identifies mice with cardiac fibrosis and hepatic steatosis caused by a mutation in the mitochondrial trifunctional protein  -subunit, 10.1093/hmg/ddl433
  28. Lopaschuk G. D., Wall S. R., Olley P. M., Davies N. J., Etomoxir, a carnitine palmitoyltransferase I inhibitor, protects hearts from fatty acid-induced ischemic injury independent of changes in long chain acylcarnitine, 10.1161/01.res.63.6.1036
  29. MORILLAS Montserrat, CLOTET Josep, RUBÍ Blanca, SERRA Dolors, ARIÑO Joaquín, HEGARDT Fausto G., ASINS Guillermina, Inhibition by etomoxir of rat liver carnitine octanoyltransferase is produced through the co-ordinate interaction with two histidine residues, 10.1042/0264-6021:3510495
  30. Tsuchiya Soken, Oku Masahito, Imanaka Yukako, Kunimoto Ryo, Okuno Yasushi, Terasawa Kazuya, Sato Fumiaki, Tsujimoto Gozoh, Shimizu Kazuharu, MicroRNA-338-3p and microRNA-451 contribute to the formation of basolateral polarity in epithelial cells, 10.1093/nar/gkp255
  31. Benes Vladimir, Castoldi Mirco, Expression profiling of microRNA using real-time quantitative PCR, how to use it and what is available, 10.1016/j.ymeth.2010.01.026
  32. Marti E. Pantano L. Banez-Coronel M. Llorens F. Minones-Moyano E. Porta S. Sumoy L. Ferrer I. Estivill X. (2010) Nucleic Acids Res.
  33. Dobrosotskaya I. Y., Regulation of SREBP Processing and Membrane Lipid Production by Phospholipids in Drosophila, 10.1126/science.1071124
  34. Shimano H, Horton J D, Shimomura I, Hammer R E, Brown M S, Goldstein J L, Isoform 1c of sterol regulatory element binding protein is less active than isoform 1a in livers of transgenic mice and in cultured cells., 10.1172/jci119248
  35. Seegmiller Adam C., Dobrosotskaya Irina, Goldstein Joseph L., Ho Y.K., Brown Michael S., Rawson Robert B., The SREBP Pathway in Drosophila, 10.1016/s1534-5807(01)00119-8
  36. Nabel Elizabeth G., Cardiovascular Disease, 10.1056/nejmra035098
  37. Brunham Liam R., ABCA1 Gene Mutations, HDL Cholesterol Levels, and Risk of Ischemic Heart Disease, 10.1001/jama.2008.539
  38. Kannel William B., High-density lipoproteins: Epidemiologic profile and risks of coronary artery disease, 10.1016/0002-9149(83)90649-5
  39. Yvan-Charvet Laurent, Ranalletta Mollie, Wang Nan, Han Seongah, Terasaka Naoki, Li Rong, Welch Carrie, Tall Alan R., Combined deficiency of ABCA1 and ABCG1 promotes foam cell accumulation and accelerates atherosclerosis in mice, 10.1172/jci33372
  40. Brunham L. R., Singaraja R. R., Duong M., Timmins J. M., Fievet C., Bissada N., Kang M. H., Samra A., Fruchart J.-C., McManus B., Staels B., Parks J. S., Hayden M. R., Tissue-Specific Roles of ABCA1 Influence Susceptibility to Atherosclerosis, 10.1161/atvbaha.108.182303
  41. Singaraja R. R., Hepatic ATP-Binding Cassette Transporter A1 Is a Key Molecule in High-Density Lipoprotein Cholesteryl Ester Metabolism in Mice, 10.1161/01.atv.0000229219.13757.a2
  42. Brunham L. R., Intestinal ABCA1 directly contributes to HDL biogenesis in vivo, 10.1172/jci27352
  43. Singaraja Roshni R., Bocher Virginie, James Erick R., Clee Susanne M., Zhang Lin-Hua, Leavitt Blair R., Tan Bing, Brooks-Wilson Angela, Kwok Anita, Bissada Nagat, Yang Yu-zhou, Liu Guoqing, Tafuri Sherrie R., Fievet Catherine, Wellington Cheryl L., Staels Bart, Hayden Michael R., HumanABCA1BAC Transgenic Mice Show Increased High Density Lipoprotein Cholesterol and ApoAI-dependent Efflux Stimulated by an Internal Promoter Containing Liver X Receptor Response Elements in Intron 1, 10.1074/jbc.m102503200
  44. Frikke-Schmidt Ruth, Association of Loss-of-Function Mutations in the ABCA1 Gene With High-Density Lipoprotein Cholesterol Levels and Risk of Ischemic Heart Disease, 10.1001/jama.299.21.2524
  45. Morash A. J., Le Moine C. M. R., McClelland G. B., Genome duplication events have led to a diversification in the CPT I gene family in fish, 10.1152/ajpregu.00088.2010
  46. Shimomura I, Shimano H, Horton J D, Goldstein J L, Brown M S, Differential expression of exons 1a and 1c in mRNAs for sterol regulatory element binding protein-1 in human and mouse organs and cultured cells., 10.1172/jci119247
  47. Sandberg R., Neilson J. R., Sarma A., Sharp P. A., Burge C. B., Proliferating Cells Express mRNAs with Shortened 3' Untranslated Regions and Fewer MicroRNA Target Sites, 10.1126/science.1155390
  48. A'Bháird N N, Ramsay R R, Malonyl-CoA inhibition of peroxisomal carnitine octanoyltransferase, 10.1042/bj2860637
  49. Angulo Paul, Nonalcoholic Fatty Liver Disease, 10.1056/nejmra011775
  50. Marchesini Giulio, Moscatiello Simona, Di Domizio Silvia, Forlani Gabriele, Obesity-Associated Liver Disease, 10.1210/jc.2008-1399
  51. Caballero Francisco, Fernández Anna, De Lacy Antonio M., Fernández-Checa Jose C., Caballería Juan, García-Ruiz Carmen, Enhanced free cholesterol, SREBP-2 and StAR expression in human NASH, 10.1016/j.jhep.2008.12.016
  52. Rayner K. J., Suarez Y., Davalos A., Parathath S., Fitzgerald M. L., Tamehiro N., Fisher E. A., Moore K. J., Fernandez-Hernando C., MiR-33 Contributes to the Regulation of Cholesterol Homeostasis, 10.1126/science.1189862
  53. Najafi-Shoushtari S. H., Kristo F., Li Y., Shioda T., Cohen D. E., Gerszten R. E., Naar A. M., MicroRNA-33 and the SREBP Host Genes Cooperate to Control Cholesterol Homeostasis, 10.1126/science.1189123
  54. Marquart T. J., Allen R. M., Ory D. S., Baldan A., miR-33 links SREBP-2 induction to repression of sterol transporters, 10.1073/pnas.1005191107
  55. Selbach Matthias, Schwanhäusser Björn, Thierfelder Nadine, Fang Zhuo, Khanin Raya, Rajewsky Nikolaus, Widespread changes in protein synthesis induced by microRNAs, 10.1038/nature07228
  56. Baek Daehyun, Villén Judit, Shin Chanseok, Camargo Fernando D., Gygi Steven P., Bartel David P., The impact of microRNAs on protein output, 10.1038/nature07242
  57. Farh K. K.-H., The Widespread Impact of Mammalian MicroRNAs on mRNA Repression and Evolution, 10.1126/science.1121158
  58. BEHM-ANSMANT I., REHWINKEL J., IZAURRALDE E., MicroRNAs Silence Gene Expression by Repressing Protein Expression and/or by Promoting mRNA Decay, 10.1101/sqb.2006.71.013