User menu

Randomized shortest-path problems: Two related models

Bibliographic reference Saerens, Marco ; Fouss, François ; Achbany, Youssef ; Yen, Luh. Randomized shortest-path problems: Two related models. In: Neural computation, Vol. 21, no. 8, p. 2363-2404 (Août 2009)
Permanent URL http://hdl.handle.net/2078/32121
  1. Achbany Youssef, Fouss Francois, Yen Luh, Pirotte Alain, Saerens Marco, Optimal Tuning of Continual Online Exploration in Reinforcement Learning, Artificial Neural Networks – ICANN 2006 (2006) ISBN:9783540386254 p.790-800, 10.1007/11840817_82
  2. Achbany Youssef, Fouss François, Yen Luh, Pirotte Alain, Saerens Marco, Tuning continual exploration in reinforcement learning: An optimality property of the Boltzmann strategy, 10.1016/j.neucom.2007.11.040
  3. Adelson-Velsky G. M., Arlazarov V. L., Donskoy M. V., Algorithms for Games, ISBN:9781461283553, 10.1007/978-1-4612-3796-9
  4. Akamatsu Takashi, Cyclic flows, Markov process and stochastic traffic assignment, 10.1016/0191-2615(96)00003-3
  5. Akamatsu Takashi, Decomposition of Path Choice Entropy in General Transport Networks, 10.1287/trsc.31.4.349
  6. Bather J., Decision theory: An introduction to dynamic programming and sequential decisions (2000)
  7. Bertsekas D. P., Network optimization: Continuous and discrete models (1998)
  8. Bertsekas D. P., Nonlinear programming (1999)
  9. Bertsekas D. P., Dynamic programming and optimal control (2000)
  10. Bertsekas D. P., Data networks (1992)
  11. Bertsekas D. P., Neuro-dynamic programming (1996)
  12. Boyd Stephen, Diaconis Persi, Xiao Lin, Fastest Mixing Markov Chain on a Graph, 10.1137/s0036144503423264
  13. Bronson R., Matrix operations (1989)
  14. Carre B., Graphs and networks (1979)
  15. Christofides N., Graph theory: An algorithmic approach (1975)
  16. Cover T. M., Elements of information theory (2006)
  17. Davis Timothy A., Direct Methods for Sparse Linear Systems, ISBN:9780898716139, 10.1137/1.9780898718881
  18. Dial Robert B., A probabilistic multipath traffic assignment model which obviates path enumeration, 10.1016/0041-1647(71)90012-8
  19. Ant Colony Optimization and Swarm Intelligence, ISBN:9783540226727, 10.1007/b99492
  20. Durbin Richard, Eddy Sean R., Krogh Anders, Mitchison Graeme, Biological sequence analysis : Probabilistic models of proteins and nucleic acids, ISBN:9780511790492, 10.1017/cbo9780511790492
  21. Ekroot L., Cover T.M., The entropy of Markov trajectories, 10.1109/18.243461
  22. Feynman R. P., Space-Time Approach to Non-Relativistic Quantum Mechanics, 10.1103/revmodphys.20.367
  23. Fouss Francois, Pirotte Alain, Renders Jean-michel, Saerens Marco, Random-Walk Computation of Similarities between Nodes of a Graph with Application to Collaborative Recommendation, 10.1109/tkde.2007.46
  24. Ghallab M., Automated planning: Theory and practice (2004)
  25. Girardin Valerie, Entropy Maximization for Markov and Semi-Markov Processes, 10.1023/b:mcap.0000012418.88825.18
  26. Girardin Valerie, Limnios Nikolaos, Entropy Rate and Maximum Entropy Methods for Countable Semi-Markov Chains, 10.1081/sta-120028687
  27. Gondran M., Graphs and algorithms (1984)
  28. Gusfield Dan, Algorithms on Strings, Trees, and Sequences : Computer Science and Computational Biology, ISBN:9780511574931, 10.1017/cbo9780511574931
  29. Harville David A., Matrix Algebra From a Statistician’s Perspective, ISBN:9780387949789, 10.1007/b98818
  30. Jaynes E. T., Information Theory and Statistical Mechanics, 10.1103/physrev.106.620
  31. Jelinek F., Statistical methods for speech recognition (1997)
  32. Jungnickel D., Graphs, networks and algorithms (2004)
  33. Kapur J. N., Kesavan H. K., Entropy Optimization Principles and Their Applications, Entropy and Energy Dissipation in Water Resources (1992) ISBN:9789401050722 p.3-20, 10.1007/978-94-011-2430-0_1
  34. Kemeny J. G., Finite Markov chains (1976)
  35. Klein D. J., Randić M., Resistance distance, 10.1007/bf01164627
  36. Lafferty J., Proceedings of the 18th International Conference on Machine Learning (ICML), 282 (2001)
  37. LaValle Steven M., Planning Algorithms, ISBN:9780511546877, 10.1017/cbo9780511546877
  38. Littman Michael L., Markov games as a framework for multi-agent reinforcement learning, Machine Learning Proceedings 1994 (1994) ISBN:9781558603356 p.157-163, 10.1016/b978-1-55860-335-6.50027-1
  39. Mohri M., Journal of Automata, Languages and Combinatorics, 7, 321 (2002)
  40. Motwani Rajeev, Raghavan Prabhakar, Randomized Algorithms, ISBN:9780511814075, 10.1017/cbo9780511814075
  41. Nadler B., Advances in neural information processing systems, 18, 955 (2006)
  42. Nesterov Yu., Characteristic functions of directed graphs and applications to stochastic equilibrium problems, 10.1007/s11081-007-9013-3
  43. Norris J. R., Markov Chains, ISBN:9780511810633, 10.1017/cbo9780511810633
  44. Osborne M. J., An introduction to game theory (2004)
  45. Powell Warren B., Approximate Dynamic Programming, ISBN:9780470182963, 10.1002/9780470182963
  46. Markov Decision Processes, ISBN:9780470316887, 10.1002/9780470316887
  47. Qiu Huaijun, Hancock Edwin R., Clustering and Embedding Using Commute Times, 10.1109/tpami.2007.1103
  48. Rabiner L., Fundamentals of speech recognition (1993)
  49. Raiffa H., Decision analysis (1970)
  50. Reichl L., A modern course in statistical physics (1998)
  51. Rue Håvard, Held Rue Leonhard, Gaussian Markov Random Fields : Theory and Applications, ISBN:9781584884323, 10.1201/9780203492024
  52. Saerens Marco, Fouss Francois, Yen Luh, Dupont Pierre, The Principal Components Analysis of a Graph, and Its Relationships to Spectral Clustering, Machine Learning: ECML 2004 (2004) ISBN:9783540231059 p.371-383, 10.1007/978-3-540-30115-8_35
  53. Schrödinger E., Statistical thermodynamics (1952)
  54. Sedgewick R., Algorithms in C. Reading (1990)
  55. Shannon C. E., A Mathematical Theory of Communication, 10.1002/j.1538-7305.1948.tb01338.x
  56. Sun Jun, Boyd Stephen, Xiao Lin, Diaconis Persi, The Fastest Mixing Markov Process on a Graph and a Connection to a Maximum Variance Unfolding Problem, 10.1137/s0036144504443821
  57. Sutton R. S., Reinforcement learning: An introduction (1998)
  58. Tahbaz-Salehi Alireza, Jadbabaie Ali, A One-Parameter Family of Distributed Consensus Algorithms with Boundary: From Shortest Paths to Mean Hitting Times, 10.1109/cdc.2006.377308
  59. Taylor H. M., An introduction to stochastic modeling (1998)
  60. Todorov E., Advances in neural information processing systems, 19, 1369 (2006)
  61. Tomlin John A., A new paradigm for ranking pages on the world wide web, 10.1145/775152.775202
  62. Wasserman Stanley, Faust Katherine, Social Network Analysis : Methods and Applications, ISBN:9780511815478, 10.1017/cbo9780511815478
  63. Yen Luh, Saerens Marco, Mantrach Amin, Shimbo Masashi, A family of dissimilarity measures between nodes generalizing both the shortest-path and the commute-time distances, 10.1145/1401890.1401984