User menu

Accurate modelling of unsteady flows in collapsible tubes.

Bibliographic reference Marchandise, Emilie ; Flaud, Patrice. Accurate modelling of unsteady flows in collapsible tubes.. In: Computer methods in biomechanics and biomedical engineering, Vol. 13, no. 2, p. 279-90 (2010)
Permanent URL
  1. Adjerid Slimane, Devine Karen D., Flaherty Joseph E., Krivodonova Lilia, A posteriori error estimation for discontinuous Galerkin solutions of hyperbolic problems, 10.1016/s0045-7825(01)00318-8
  2. Ainsworth Mark, Dispersive and dissipative behaviour of high order discontinuous Galerkin finite element methods, 10.1016/
  3. Alastruey J. 2006. Numerical modeling of pulse wave propagation in the cardiovascular system: development, validation and clinical applications [Ph.D. thesis]. London: Imperial College
  4. Alastruey J., Parker K.H., Peiró J., Byrd S.M., Sherwin S.J., Modelling the circle of Willis to assess the effects of anatomical variations and occlusions on cerebral flows, 10.1016/j.jbiomech.2006.07.008
  5. BROOK B. S., FALLE S. A. E. G., PEDLEY T. J., Numerical solutions for unsteady gravity-driven flows in collapsible tubes: evolution and roll-wave instability of a steady state, 10.1017/s0022112099006084
  6. Brook B.S., Pedley T.J., A model for time-dependent flow in (giraffe jugular) veins: uniform tube properties, 10.1016/s0021-9290(01)00159-2
  7. Cockburn B, Math. Comput, 52, 411 (1989)
  8. Cockburn Bernardo, Shu Chi-Wang, The Runge–Kutta Discontinuous Galerkin Method for Conservation Laws V, 10.1006/jcph.1998.5892
  9. Cockburn Bernardo, Shu Chi-Wang, 10.1023/a:1012873910884
  10. Dinnar U, Cardiovascular fluid dynamics (1981)
  11. Elad David, Choking Phenomena in a Lung-Like Model, 10.1115/1.3138636
  12. Elad David, Kamm Roger D., Shapiro Ascher H., Steady compressible flow in collapsible tubes: application to forced expiration, 10.1017/s0022112089001515
  13. Elad D., Katz D., Kimmel E., Einav S., Numerical schemes for unsteady fluid flow through collapsible tubes, 10.1016/0141-5425(91)90038-9
  14. Elad D., Sahar M., Avidor J. M., Einav S., Steady Flow Through Collapsible Tubes: Measurements of Flow and Geometry, 10.1115/1.2895454
  15. Formaggia L, Lecture Notes, 1 (2004)
  16. FULLANA JOSE-MARIA, CROS FRANÇOIS, FLAUD PATRICE, ZALESKI STÉPHANE, Filling a collapsible tube, 10.1017/s0022112003005834
  17. Glaister Paul, Approximate Riemann solutions of the shallow water equations, 10.1080/00221688809499213
  18. Guesdon P, C. R. Acad. Sci, 335, 207 (2007)
  19. Hargens Alan R., Millard Ronald W., Pettersson Knut, Johansen Kjell, Gravitational haemodynamics and oedema prevention in the giraffe, 10.1038/329059a0
  20. Hartmann Ralf, Houston Paul, Adaptive Discontinuous Galerkin Finite Element Methods for the Compressible Euler Equations, 10.1006/jcph.2002.7206
  21. HEIL MATTHIAS, Stokes flow in collapsible tubes: computation and experiment, 10.1017/s0022112097007490
  22. Hu Changqing, Shu Chi-Wang, A Discontinuous Galerkin Finite Element Method for Hamilton--Jacobi Equations, 10.1137/s1064827598337282
  23. Kamm Roger D., Shapiro Ascher H., Unsteady flow in a collapsible tube subjected to external pressure or body forces, 10.1017/s0022112079001348
  24. Kimmel E., Kamm R. D., Shapiro A. H., Numerical Solutions for Steady and Unsteady Flow in a Model of the Pulmonary Airways, 10.1115/1.3108444
  25. Lesaint P. 1975. Sur la résolution des systèmes hyperboliques du premier ordre par la méthode des éléments finis [Ph.D. thesis]. Paris: Université Pierre et Marie Curie
  26. Luo X. Y., Pedley T. J., A numerical simulation of unsteady flow in a two-dimensional collapsible channel, 10.1017/s0022112096000286
  27. Marchandise E, J. Comput. Appl. Math (2006)
  28. Marchandise Emilie, Remacle Jean-François, Chevaugeon Nicolas, A quadrature-free discontinuous Galerkin method for the level set equation, 10.1016/
  29. Marchandise Emilie, Willemet Marie, Lacroix Valérie, A numerical hemodynamic tool for predictive vascular surgery, 10.1016/j.medengphy.2008.04.015
  30. Matsuzaki Y, Monogr. Atheroscler, 15, 138 (1990)
  31. Pedley TJ, The fluid dynamics of large blood vessels (1980)
  32. PEDLEY T. J., Wave Phenomena in Physiological Flows, 10.1093/imamat/32.1-3.267
  33. Pedley T. J., Brook B. S., Seymour R. S., Blood Pressure and Flow Rate in the Giraffe Jugular Vein, 10.1098/rstb.1996.0080
  34. Qiu. Jianxian, Shu Chi-Wang, Runge--Kutta Discontinuous Galerkin Method Using WENO Limiters, 10.1137/s1064827503425298
  35. Remacle Jean-François, Frazão Sandra Soares, Li Xiangrong, Shephard Mark S., An adaptive discretization of shallow-water equations based on discontinuous Galerkin methods, 10.1002/fld.1204
  36. Ribreau C., Naili S., Langlet A., Head Losses in Smooth Pipes Obtained from Collapsed Tubes, 10.1006/jfls.1994.1009
  37. Roe P.L, Approximate Riemann solvers, parameter vectors, and difference schemes, 10.1016/0021-9991(81)90128-5
  38. Rosar M, N. Y. J. Math, 7, 281 (2001)
  39. Shapiro AH, Proceedings of the 6th Canadian Congress on Applied Mathematics, 883 (1977)
  40. Shapiro Ascher H., Steady Flow in Collapsible Tubes, 10.1115/1.3426281
  41. Shu Chi-Wang, Osher Stanley, Efficient implementation of essentially non-oscillatory shock-capturing schemes, 10.1016/0021-9991(88)90177-5
  42. Sussman Mark, Almgren Ann S, Bell John B, Colella Phillip, Howell Louis H, Welcome Michael L, An Adaptive Level Set Approach for Incompressible Two-Phase Flows, 10.1006/jcph.1998.6106
  43. Sussman Mark, Hussaini M. Y., 10.1023/a:1025328714359
  44. van Leer Bram, Towards the ultimate conservative difference scheme. II. Monotonicity and conservation combined in a second-order scheme, 10.1016/0021-9991(74)90019-9
  45. Wild Rosemary, Pedley T. J., Riley D. S., Viscous flow in collapsible tubes of slowly varying elliptical cross-section, 10.1017/s0022112077002031
  46. Yang X.L., Liu Y., Yang J.M., Fluid-structure interaction in a pulmonary arterial bifurcation, 10.1016/j.jbiomech.2007.01.008