Abstract |
: |
[eng] The ordinary Landau problem of a charged particle in a plane subjected to a
perpendicular homogeneous and static magnetic field is reconsidered from
different points of view. The role of phase space canonical transformations and
their relation to a choice of gauge in the solution of the problem is
addressed. The Landau problem is then extended to different contexts, in
particular the singular situation of a purely linear potential term being added
as an interaction, for which a complete purely algebraic solution is presented.
This solution is then exploited to solve this same singular Landau problem in
the half-plane, with as motivation the potential relevance of such a geometry
for quantum Hall measurements in the presence of an electric field or a
gravitational quantum well. |