User menu

The One-loop pentagon to higher orders in epsilon

Bibliographic reference
Permanent URL http://hdl.handle.net/2078/31735
  1. V. Del Duca, C. Duhr and E.W. Nigel Glover, The five-gluon amplitude in the high-energy limit, JHEP 12 (2009) 023 [ arXiv:0905.0100 ] [ SPIRES ].
  2. C. Anastasiou, Z. Bern, L.J. Dixon and D.A. Kosower, Planar amplitudes in maximally supersymmetric Yang-Mills theory, Phys. Rev. Lett. 91 (2003) 251602 [ hep-th/0309040 ] [ SPIRES ].
  3. G.P. Korchemsky and A.V. Radyushkin, Renormalization of the Wilson loops beyond the leading order, Nucl. Phys. B 283 (1987) 342 [ SPIRES ].
  4. N. Beisert, B. Eden and M. Staudacher, Transcendentality and crossing, J. Stat. Mech. (2007) P01021 [ hep-th/0610251 ] [ SPIRES ].
  5. L. Magnea and G. Sterman, Analytic continuation of the Sudakov form-factor in QCD, Phys. Rev. D 42 (1990) 4222 [ SPIRES ].
  6. Sterman George, Tejeda-Yeomans Maria E., Multi-loop amplitudes and resummation, 10.1016/s0370-2693(02)03100-3
  7. Z. Bern, L.J. Dixon and V.A. Smirnov, Iteration of planar amplitudes in maximally supersymmetric Yang-Mills theory at three loops and beyond, Phys. Rev. D 72 (2005) 085001 [ hep-th/0505205 ] [ SPIRES ].
  8. Z. Bern, M. Czakon, D.A. Kosower, R. Roiban and V.A. Smirnov, Two-loop iteration of five-point N = 4 super-Yang-Mills amplitudes, Phys. Rev. Lett. 97 (2006) 181601 [ hep-th/0604074 ] [ SPIRES ].
  9. F. Cachazo, Sharpening the leading singularity, arXiv:0803.1988 [ SPIRES ].
  10. L.F. Alday and J. Maldacena, Comments on gluon scattering amplitudes via AdS/CFT, JHEP 11 (2007) 068 [ arXiv:0710.1060 ] [ SPIRES ].
  11. Z. Bern et al., The two-loop six-gluon MHV amplitude in maximally supersymmetric Yang-Mills theory, Phys. Rev. D 78 (2008) 045007 [ arXiv:0803.1465 ] [ SPIRES ].
  12. F. Cachazo, M. Spradlin and A. Volovich, Leading singularities of the two-loop six-particle MHV amplitude, Phys. Rev. D 78 (2008) 105022 [ arXiv:0805.4832 ] [ SPIRES ].
  13. L.F. Alday and J.M. Maldacena, Gluon scattering amplitudes at strong coupling, JHEP 06 (2007) 064 [ arXiv:0705.0303 ] [ SPIRES ].
  14. J.M. Drummond, G.P. Korchemsky and E. Sokatchev, Conformal properties of four-gluon planar amplitudes and Wilson loops, Nucl. Phys. B 795 (2008) 385 [ arXiv:0707.0243 ] [ SPIRES ].
  15. A. Brandhuber, P. Heslop and G. Travaglini, MHV amplitudes in N = 4 super Yang-Mills and Wilson loops, Nucl. Phys. B 794 (2008) 231 [ arXiv:0707.1153 ] [ SPIRES ].
  16. J.M. Drummond, J. Henn, G.P. Korchemsky and E. Sokatchev, On planar gluon amplitudes/Wilson loops duality, Nucl. Phys. B 795 (2008) 52 [ arXiv:0709.2368 ] [ SPIRES ].
  17. J.M. Drummond, J. Henn, G.P. Korchemsky and E. Sokatchev, Conformal ward identities for Wilson loops and a test of the duality with gluon amplitudes, Nucl. Phys. B 826 (2010) 337 [ arXiv:0712.1223 ] [ SPIRES ].
  18. Drummond J.M., Henn J., Korchemsky G.P., Sokatchev E., The hexagon Wilson loop and the BDS ansatz for the six-gluon amplitude, 10.1016/j.physletb.2008.03.032
  19. J.M. Drummond, J. Henn, G.P. Korchemsky and E. Sokatchev, Hexagon Wilson loop = six-gluon MHV amplitude, Nucl. Phys. B 815 (2009) 142 [ arXiv:0803.1466 ] [ SPIRES ].
  20. C. Anastasiou et al., Two-loop polygon Wilson loops in N = 4 SYM, JHEP 05 (2009) 115 [ arXiv:0902.2245 ] [ SPIRES ].
  21. Z. Bern, L.J. Dixon, D.C. Dunbar and D.A. Kosower, One-loop n-point gauge theory amplitudes, unitarity and collinear limits, Nucl. Phys. B 425 (1994) 217 [ hep-ph/9403226 ] [ SPIRES ].
  22. Bern Zvi, Dixon Lance, Dunbar David C., Kosower David A., One-loop self-dual and N = 4 super Yang-Mills, 10.1016/s0370-2693(96)01676-0
  23. Halliday I.G., Ricotta R.M., Negative dimensional integrals. I. Feynman graphs, 10.1016/0370-2693(87)91229-9
  24. R. M. Ricotta, Negative dimensions in quantum field theory, in J.J. Giambiagi Festschrift, H. Falomir ed. (1990) pg. 350.
  25. E.E. Boos and A.I. Davydychev, A method of evaluating massive Feynman integrals, Theor. Math. Phys. 89 (1991) 1052 [Teor. Mat. Fiz. 89 (1991) 56] [ SPIRES ].
  26. Goncharov A. B., Multiple polylogarithms, cyclotomy and modular complexes, 10.4310/mrl.1998.v5.n4.a7
  27. J. Vollinga and S. Weinzierl, Numerical evaluation of multiple polylogarithms, Comput. Phys. Commun. 167 (2005) 177 [ hep-ph/0410259 ] [ SPIRES ].
  28. H. Exton, Multiple hypergeometric functions and applications, Ellis Horwood (1976).
  29. A.P. Prudnikov, Y.A. Brychkov and O. Marichev, Integrals and series, Gordan and Breach (1990).
  30. A. Erdélyi, Higher transcendental functions. Vol. 1 and 2, McGraw-Hill (1954).
  31. P. Appell and J. Kampé de Fériet, Fonctions hypergéométriques et hypersphériques, polynômes d’Hermite, Gauthiers-Villars (1926).
  32. U. Aglietti, V. Del Duca, C. Duhr, G. Somogyi and Z. Trócsányi, Analytic integration of real-virtual counterterms in NNLO jet cross sections I, JHEP 09 (2008) 107 [ arXiv:0807.0514 ] [ SPIRES ].
  33. N.N. Bogoliubov and D.V. Shirkov, Quantum fields, Benjamin Cummings Pub. Co. (1982).
  34. C. Itzykson and J.B. Zuber, Quantum field theory, McGraw-Hill (1980).
  35. V.A. Smirnov, Evaluating Feynman integrals, Springer Tracts in Modern Physics, Springer (2004).
  36. V.A. Smirnov, Feynman integral calculus, Springer (2006).
  37. S. Moch and P. Uwer, XSummer: transcendental functions and symbolic summation in form, Comput. Phys. Commun. 174 (2006) 759 [ math-ph/0508008 ] [ SPIRES ].
  38. VERMASEREN J. A. M., HARMONIC SUMS, MELLIN TRANSFORMS AND INTEGRALS, 10.1142/s0217751x99001032
  39. S. Moch, P. Uwer and S. Weinzierl, Nested sums, expansion of transcendental functions and multi-scale multi-loop integrals, J. Math. Phys. 43 (2002) 3363 [ hep-ph/0110083 ] [ SPIRES ].
  40. A.B. Goncharov, Multiple polylogarithms and mixed Tate motives, math/0103059v4 .
  41. REMIDDI E., VERMASEREN J. A. M., HARMONIC POLYLOGARITHMS, 10.1142/s0217751x00000367
  42. V. Del Duca, C. Duhr and E.W.N. Glover, Iterated amplitudes in the high-energy limit, JHEP 12 (2008) 097 [ arXiv:0809.1822 ] [ SPIRES ].
  43. A.I. Davydychev, Recursive algorithm of evaluating vertex type Feynman integrals, J. Phys. A 25 (1992) 5587 [ SPIRES ].
  44. T. Gehrmann and E. Remiddi, Numerical evaluation of two-dimensional harmonic polylogarithms, Comput. Phys. Commun. 144 (2002) 200 [ hep-ph/0111255 ] [ SPIRES ].