User menu

Noncommuting Coordinates and Magnetic Monopoles

Bibliographic reference
Permanent URL http://hdl.handle.net/2078/31704
  1. A. Connes, Noncommutative geometry, Academic Press, (1994).
  2. N. Seiberg and E. Witten, String theory and noncommutative geometry, JHEP 09 (1999) 032 [ hep-th/9908142 ] [ SPIRES ].
  3. R.C. Myers, Dielectric-branes, JHEP 12 (1999) 022 [ hep-th/9910053 ] [ SPIRES ].
  4. G.V. Dunne and R. Jackiw, ‘Peierls substitution’ and Chern-Simons quantum mechanics, Nucl. Phys. (Proc. Suppl.) 33C (1993) 114 [ hep-th/9204057 ] [ SPIRES ].
  5. G. Magro, Noncommuting coordinates in the Landau problem, quant-ph/0302001 [ SPIRES ].
  6. M. Bander, Noncommuting spherical coordinates, Phys. Rev. D 70 (2004) 087702 [ hep-th/0407177 ] [ SPIRES ].
  7. J. Frenkel and S.H. Pereira, Coordinate noncommutativity in strong non-uniform magnetic fields, Phys. Rev. D 69 (2004) 127702 [ hep-th/0401048 ] [ SPIRES ].
  8. I. Tamm, Die verallgemeinerten Kugelfunktionen und die Wellenfunktionen eines Elektrons im Felde eines Magnetpoles (in German), Z. Phys. 71 (1931) 141.
  9. M. Fierz, Zur Theorie magnetisch geladener Teilchen (in German), Helv. Phys. Acta 17 (1944) 27.
  10. T.T. Wu and C.N. Yang, Dirac monopole without strings: monopole harmonics, Nucl. Phys. B 107 (1976) 365 [ SPIRES ].
  11. Dirac P. A. M., Quantised Singularities in the Electromagnetic Field, 10.1098/rspa.1931.0130
  12. J.S. Schwinger, Magnetic charge and quantum field theory, Phys. Rev. 144 (1966) 1087 [ SPIRES ].
  13. C.A. Hurst, Charge quantization and non-integrable Lie algebras, Annals Phys. 50 (1968) 51 [ SPIRES ].
  14. A. Peres, Rotational invariance of magnetic monopoles, Phys. Rev. 167 (1968) 1449
  15. R. Jackiw, 3-cocycle in mathematics and physics, Phys. Rev. Lett. 54 (1985) 159 [ SPIRES ].
  16. S. Deguchi and K. Kitsukawa, Charge quantization conditions based on the Atiyah-Singer index theorem, Prog. Theor. Phys. 115 (2006) 1137 [ hep-th/0512063 ] [ SPIRES ].
  17. D. Zwanziger, Exactly soluble nonrelativistic model of particles with both electric and magnetic charges, Phys. Rev. 176 (1968) 1480 [ SPIRES ].
  18. N. Katayama, On generalized Runge-Lenz vector and conserved symmetric tensor for central potential systems with a monopole field on spaces of constant curvature, Nuovo Cim. B 108 (1993) 657 [ SPIRES ].
  19. T. Yoshida, Generalized Laplace-Runge-Lenz vector for the three-dimensional classical motions generated by central forces with a monopole, Nuovo Cim. B 104 (1989) 375.
  20. F.A. Berezin, General concept of quantization, Commun. Math. Phys. 40 (1975) 153 [ SPIRES ].
  21. J. Hoppe, Quantum theory of a massless relativistic surface and a two dimensional bound state problem, Ph.D. thesis, MIT, Cambridge U.S.A. (1982).
  22. J. Madore, The fuzzy sphere, Class. Quant. Grav. 9 (1992) 69 [ SPIRES ].
  23. H. Grosse and P. Prešnajder, The construction on noncommutative manifolds using coherent states, Lett. Math. Phys. 28 (1993) 239 [ SPIRES ].
  24. H. Grosse and P. Prešnajder, The Dirac operator on the fuzzy sphere, Lett. Math. Phys. 33 (1995) 171 [ SPIRES ].
  25. H. Grosse, C. Klimčík and P. Prešnajder, Topologically nontrivial field configurations in noncommutative geometry, Commun. Math. Phys. 178 (1996) 507 [ hep-th/9510083 ] [ SPIRES ].
  26. P. Prešnajder, The origin of chiral anomaly and the noncommutative geometry, J. Math. Phys. 41 (2000) 2789 [ hep-th/9912050 ] [ SPIRES ].
  27. Varshalovich D A, Moskalev A N, Khersonskii V K, Quantum Theory of Angular Momentum, ISBN:9789971501075, 10.1142/0270
  28. T.T. Wu and C.N. Yang, Some properties of monopole harmonics, Phys. Rev. D 16 (1977) 1018 [ SPIRES ].