User menu

A Matrix integral solution to two-dimensional W(p) gravity

Bibliographic reference
Permanent URL
  1. [AvM] Adler, M., van Moerbeke, P.: The boundary of isospectral sets of differential operators, to appear 1992
  2. [A] Anderson, G. W.: Notes on the Heisenberg relation (preprint 1990)
  3. [BTZ] Bessis, D., Itzykson, Cl., Zuber, J.-B.: Quantum field theory techniques in graphical enumeration, Adv. Appl. Math.1, 109–157 (1980)
  4. [DJKM] Date, E., Jimbo, M., Kashiwara, M., Miwa, T.: Transformation groups for soliton equations. Proe. RIMS Symp. Nonlinear integrable systems, Classical and quantum theory (Kyoto 1981), pp. 39–119. Singapore: World Scientific 1983
  5. [DVV] Dijkgraaf, R., Verlinde, E., Verlinde, H.: Loop equations and Virasoro constraints in non-perturbative 2-D quantum gravity. Nucl. Phys.B348, 435 (1991)
  6. [DG] Duistermaat, J.J., Grünbaum, F.A.: Differential equations in the spectral parameter: Commun. Math. Phys.103, 177–240 (1986)
  7. [FIZ] Di Francesco, P., Itzykson, Cl. & Zuber, J.-B.: “ClassicalW-algebras,” preprint 1990
  8. [FKN1] Fukuma, M., Kawai, H. Nakayama, R.: Continuum Schwinger-Dyson equations and universal structures in two-dimensional quantum gravity, UT 562, KEK-TH-251, KEK preprint 90–27, May 1990
  9. [FKN2] Fukuma, M., Kawai, H., Nakayama, R.: Infinite dimensional Grassmannian structure of two-dimensional quantum gravity, UT 572, KEK-TH-272, KEK preprint 90–165, Nov. 1990
  10. [FKN3] Fukuma, M., Kawai, H., Nakayama, R.: Explicit solution forp−q duality in two-dimensional quantum gravity UT 582, KEK-TH-289, KEK preprint 91-37, May 1991
  11. Gervais J.-L., Infinite family of polynomial functions of the Virasoro generators with vanishing Poisson brackets, 10.1016/0370-2693(85)91326-7
  12. [G] Goeree, J.:W-constraints in 2D quantum gravity. Nucl. Phys.B358, 737–757 (1991)
  13. [KR] Kac, V., Raina, A.: Highest weight representations of infinite dimensional Lie algebras. Bombay Lectures: World Scientific 1987
  14. Kac V., Schwarz A., Geometric interpretation of the partition function of 2D gravity, 10.1016/0370-2693(91)91901-7
  15. [K1] Kontsevich, M.: Intersection theory on the space of curve moduli (handwritten 1991)
  16. [K2] Kontsevich, M.: Intersection theory on the moduli space of curves and the matrix Airy function, Max Planck Institute, Arbeitstagung lecture 1991
  17. [K3] Kontsevich, M.: Intersection theory on the moduli space of curves and the matrix Airy function. Commun. Math. Phys.146
  18. [Kr] Krichever, I.M.: Topological minimal models and soliton equations (reprint 1991)
  19. Mumford David, Tata Lectures on Theta II, ISBN:9780817645694, 10.1007/978-0-8176-4578-6
  20. [MM] Magnano, G., Magri, F.: Poisson- Nyenhuis structures and Sato hierarchy, preprint 1991
  21. Mehta M. L., Random matrices in nuclear physics and number theory, 10.1090/conm/050/841101
  22. [McK] McKean, H. P.: Compatible bracket in Hamiltonian mechanics, reprint 1991; Harvard-Brandeis-MIT Colloquium talk (Spring 91)
  23. [N] Nahm, W.: Conformal quantum field theories in two dimensions (to appear)
  24. [R] Radul, A. O.: Lie algebras of differential operators, their central extensions, andW-algebras. Funct. Anal. Appl.25, 33–49 (1991)
  25. [Rai] Raina, A.: Fay's trisecant identity and Wick's, theorem: an algebraic geometry viewpoint. Exp. Math8, 227–245 (1990)
  26. [Sa] Sato, M.: Soliton equations and the universal Grassmann manifold (by Noumi in Japanese), Math. Lect. Note Ser. no 18. Sophia University, Tokyo, 1984
  27. Segal Graeme, Wilson George, Loop groups and equations of KdV type, 10.1007/bf02698802
  28. [Schw] Schwarz, A.: On the solutions to the string equation. Mod. Phys. Lett. A,29, 2713–2725 (1991)
  29. [Sh] Shiota, T.: On the equation [Q, P]=1 (preprint 1991)
  30. [S] Smit, D. J.: A Quantum Group structure in Integrable conformal field theories. Commun. Math. Phys.128, 1–37 (1990)
  31. [W1] Witten, Ed.: Two-dimensional gravity and intersection theory, of moduli space, Harvard University lecture, May 1990. Diff. Geometry 1991
  32. [W2] Witten, Ed.: On the Kontsevich Model and other Models of Two Dimensional Gravity, IASSNS-HEP-91/24 (6/1991) preprint