User menu

DIMENSION OF THE COMMUTANT FOR THE SU(N) AFFINE ALGEBRA

Bibliographic reference
Permanent URL http://hdl.handle.net/2078/31463
  1. Bernard, D.: Nucl. Phys.B288, 628 (1987)
  2. Altschüler D., Lacki J., Zaugg Ph., The affine Weyl group and modular invariant partition functions, 10.1016/0370-2693(88)91664-4
  3. Christe, P., Ravanini, F.: Int. J. Mod. Phys. A4, 897 (1989)
  4. Bouwknegt, P.: Nucl. Phys. B290, 507 (1987)
  5. Moore, G., Seiberg, N.: Nucl. Phys. B313, 16 (1989)
  6. Capelli, A., Itzykson, C., Zuber, J.B.: Commun. Math. Phys.113, 1 (1987)
  7. Kato, A.: Mod. Phys. Lett. A2, 585 (1987)
  8. Itzykson, C.: Level one Kac-Moody characters and modular invariance. In: Binetruy, P., Sorba, P., Stora, R. (eds.) Conformal field theories and related topics. Nucl. Phys. B Proc. [Suppl.] 5. Amsterdam: North-Holland 1988
  9. Bauer, M., Itzykson, C.: Affine characters and modular transformations. Saclay preprint SPhT/89/071, to appear in the Proceedings of Les Houches, March 1989, ‘Physiquet et Théorie des Nombres’. Berlin, Heidelberg, New York: Springer
  10. Di Francesco, P., Zuber, J.B.:SU(N) Lattice integrable models associated with graphs. Saclay preprint, SPhT/89/092
  11. Goddard, P., Olive, D.: Int. J. Mod. Phys. A1, 303 (1986)
  12. Goddard, P., Kent, A., Olive, D.: Commun. Math. Phys.103, 105 (1986)
  13. Auslander, L., Tolimieri, R.: Bull. Am. Math. Soc.1, 847 (1979)
  14. Serre, J.P.: Cours d'arithmétique. Paris: Presses Universitaires de France, 1970
  15. Ireland, K., Rosen, M.: A classical introduction to modern number theory. Berlin, Heidelberg, New York: Springer 1972
  16. Armstrong M. A., Groups and Symmetry, ISBN:9781441930859, 10.1007/978-1-4757-4034-9
  17. Apostol Tom M., Modular Functions and Dirichlet Series in Number Theory, ISBN:9781468499124, 10.1007/978-1-4684-9910-0
  18. Bauer, M., Itzykson, C.: Modular transformations ofSU(N) affine characters and their commutant. Saclay preprint SPhT/89/123