User menu

CHIRAL NONINVARIANT REGULARIZATIONS IN CONTINUUM FERMION THEORIES

Bibliographic reference
Permanent URL http://hdl.handle.net/2078/31384
  1. Adler Stephen L., Axial-Vector Vertex in Spinor Electrodynamics, 10.1103/physrev.177.2426
  2. Bell J. S., Jackiw R., A PCAC puzzle: π0→γγ in the σ-model, 10.1007/bf02823296
  3. Fujikawa Kazuo, Path-Integral Measure for Gauge-Invariant Fermion Theories, 10.1103/physrevlett.42.1195
  4. Fujikawa Kazuo, Path integral for gauge theories with fermions, 10.1103/physrevd.21.2848
  5. Fujikawa Kazuo, Erratum: Path integral for gauge theories with fermions, 10.1103/physrevd.22.1499
  6. K. G. Wilson, New Phenomena in Subnuclear Physics (1977)
  7. Nielsen H.B., Ninomiya M., A no-go theorem for regularizing chiral fermions, 10.1016/0370-2693(81)91026-1
  8. Karsten Luuk H., Smith Jan, Lattice fermions: Species doubling, chiral invariance and the triangle anomaly, 10.1016/0550-3213(81)90549-6
  9. Drell Sidney D., Weinstein Marvin, Yankielowicz Shimon, Strong-coupling field theory. I. Variational approach toφ4theory, 10.1103/physrevd.14.487
  10. Rabin Jeffrey M., Perturbation theory for undoubled lattice fermions, 10.1103/physrevd.24.3218
  11. Weinstein Marvin, Anomalies and the lattice Schwinger model: Paradigm not paradox, 10.1103/physrevd.26.839
  12. Seiler E., Stamatescu I. O., Lattice fermions andθvacuums, 10.1103/physrevd.25.2177
  13. E. Seiler, Phys. Rev. D, 26, 534 (1982)
  14. Andrianov A., Bonora L., Gamboa-Saraví R., Regularized functional integral for fermions and anomalies, 10.1103/physrevd.26.2821