User menu

SCALING LIMIT OF SOME CRITICAL MODELS

Bibliographic reference
Permanent URL http://hdl.handle.net/2078/31378
  1. Bricmont, J., Fontaine, J.-R., Lebowitz, J., Lieb, E., Spencer, T.: Lattice systems with a continuous symmetry. III. Low temperature asymptotic expansion for the plane rotator model. Commun. Math. Phys.78, 545 (1981)
  2. Fontaine, J.-R.: Low fugacity asymptotic expansion for classical lattice dipole gases. J. Stat. Phys.26, 767 (1981)
  3. Bricmont, J., Fontaine, J.-R., Lebowitz, J., Spencer, T.: Lattice systems with a continuous symmetry. I. Perturbation theory for unbounded spins. Commun. Math. Phys.78, 281 (1980)
  4. Gawedzki, K., Kupiainen, A.: Block renormalization group for dipole gas and (??)4. University of Helsinki (preprint)
  5. Magnen, J., Sénéor, R.: The infrared behaviour of (??) 3 4 . Preprint Centre de Physique Théorique de l'Ecole Polytechnique, Palaiseau
  6. Fontaine, J.-R.: Bounds on the decay of correlations for (??)4 models. Commun. Math. Phys.87, 385 (1982)
  7. Malyshev, V.A., Tirozzi, B.: Renormalization group convergence for small perturbations of Gaussian random fields with slowly decaying correlations. J. Math. Phys.22, 2020 (1981)
  8. Federbush, P.: A mass zero cluster expansion. Part. 1. The expansion. Commun. Math. Phys.81, 327 (1981)
  9. Federbush, P.: A mass zero cluster expansion. Part. 2. Convergence. Commun. Math. Phys.81, 341 (1981)
  10. Brascamp, H.J., Lieb, E.H.: On extensions of the Brunn-Minkowski and Prekopa-Leindler theorems, including inequalities for Log concave functions, and with an application to the diffusion equation. J. Funct. Anal.22, 366 (1976)
  11. Mermin, N.D., Wagner, H.: Absence of ferromagnetism or antiferromagnetism in one- or two-dimensional isotropic Heisenberg models. Phys. Rev. Lett.17, 1133 (1966)
  12. Glimm, J., Jaffe, A., Spencer, T.: The particle structure of the weakly coupledP(?)2 model and other applications of high temperature expansions. In: Constructive quantum field theory. Velo, G., Wightman, A. (eds.). Lecture Notes in Physics, Vol. 25. Berlin, Heidelberg, New York: Springer 1973
  13. Glimm, J., Jaffe, A.: Particles and scaling for lattice fields and Ising models. Commun. Math. Phys.51, 1 (1976)
  14. Newman, C.M.: Normal fluctuations and the FKG inequalities. Commun. Math. Phys.74, 119 (1980)
  15. Fröhlich, J., Spencer, T.: Some recent rigorous results in the theory of phase transitions and critical phenomena. Séminaire Bourbaki No. 586 (February 1982)
  16. Sinai, Ya.G.: Mathematical foundations of the renormalization group method in statistical physics. In: Mathematical problems in theoretical physics. Dell'Antonio, G., Doplicher, S., Jona-Lasinio, G. (eds.). Lectures Notes in Physics, Vol. 80. Berlin, Heidelberg, New York: Springer 1978
  17. Osterwalder, K., Schrader, R.: Axioms for Euclidean Green's functions. Commun. Math. Phys.31, 83?112 (1973)
  18. Newman, C.M.: Self-similar random fields in mathematical physics. Proceedings of the measure theory conferences. Northern Illinois University, Dekalb, IL. (1980)