User menu

INFRARED BOUNDS AND THE PEIERLS ARGUMENT IN TWO-DIMENSIONS

Bibliographic reference
Permanent URL http://hdl.handle.net/2078/31365
  1. Baker, G.A., Bishop, A.R.: Order-disorder displacive crossover in a structural phase transition model. Los Alamos (preprint)
  2. Beale, P., Sarker, S., Krumhansl, J.A.: A renormalisation group study of crossover in structural phase transitions. Phys. Rev. B24, 266 (1981)
  3. Beale, P.: Critical and crossover behavior of the two dimensional ?4 model on a lattice. Phys. Rev. B24, 6711 (1981) and private communication
  4. Bricmont, J., Fontaine, J.-R.: Correlation inequalities and contour estimates. J. Stat. Phys.26, 745 (1981)
  5. Bricmont, J., Fontaine, J.-R.: Perturbation about the mean field critical point. Commun. Math. Phys.86, 337?362 (1982)
  6. Brydges, D., Fröhlich, J., Spencer, T.: The random walk representation of classical spin systems and correlation inequalities. Commun. Math. Phys.83, 123 (1982)
  7. Fröhlich, J.: Phase transitions, Goldstone bosons and topological superselection rules. Acta Phys. Austriaca Suppl.XV, 133 (1976)
  8. Fröhlich, J., Israel, R., Lieb, E., Simon, B.: Phase transitions and reflection positivity. I. General theory and long range models. Commun. Math. Phys.62, 1 (1978)
  9. Fröhlich, J., Lieb, E.: Phase transitions in anisotropic lattice spin systems. Commun. Math. Phys.60, 233 (1978)
  10. Fröhlich, J., Simon, B., Spencer, T.: Infrared bounds, phase transitions, and continuous symmetry breaking. Commun. Math. Phys.50, 79 (1976)
  11. Fröhlich, J., Spencer, T.: The Kosterlitz-Thouless transition in the two-dimensional abelian spin systems and the Coulomb gas. Commun. Math. Phys.81, 527 (1981)
  12. Glimm, J., Jaffe, A., Spencer, T.: Phase transitions for ? 2 4 quantum fields. Commun. Math. Phys.45, 203 (1975)
  13. Kunz, H., Pfister, C.-E., Vuillermot, P.A.: Inequalities for some classical spin vector models. J. Phys. A9 1673 (1976); Phys. Lett.54A, 428 (1975)
  14. Malyshev, S.: Phase transitions in classical Heisenberg ferromagnets with arbitrary parameter of anisotropy. Commun. Math. Phys.40, 75 (1975)