User menu

CLASSICAL MECHANICS OF NONSPHERICAL BODIES. 2. BOLTZMANN EQUATION AND H THEOREM IN TWO-DIMENSIONS

Bibliographic reference
Permanent URL http://hdl.handle.net/2078/31324
  1. D. Speiser, “Collision equation for asymmetric bodies in a plane,” Preprint UCL‐IPT‐79‐06, Université Catholique de Louvain, 1979.
  2. Y. Elskens and D. Speiser, “Classical mechanics of non‐spherical bodies. I. Binary collisions in two dimensions,” J. Math. Phys. 23, 539 (1982), previous paper.JMAPAQ0022-2488
  3. [Collected Papers, Vol. 6 (Martinus Nijhoff, The Hague, 1938), p. 74].
  4. L. Boltzmann, Leçons sur la Théorie des Gaz, Vol. 2, translated by A. Gallotti and H. Bénard (Gauthier‐Villars, Paris, 1905).
  5. R. C. Tolman, The Principles of Statistical Mechanics (Oxford U.P., London, 1955).
  6. H. Grad, “Statistical mechanics, thermodynamics, and fluid dynamics of systems with an arbitrary number of integrals,” Commun. Pure Appl. Math. 5, 455 (1952).CPMAMV0010-3640
  7. E. C. G. Stückelberg, “Théoréme H et unitarité de S,” Helv. Phys. Acta 25, 577 (1952).HPACAK0018-0238
  8. W. Heitler, “Le principe du bilan détaillé,” Ann. Inst. H. Poincaré 15, 67 (1956).
  9. C. N. Yang and C. P. Yang, “Comments on the question whether violation of microscopic time reversal invariance leads to the possibility of entropy decrease,” Preprint ITP‐SB‐79‐26, State University of New York at Stony Brook, 1979.
  10. C. F. Curtiss, “Kinetic theory of nonspherical molecules I,” J. Chem. Phys. 24, 225 (1955) and subsequent papers. We thank Professor G. Nicolis for drawing our attention to this work.JCPSA60021-9606
  11. (b) Report CM‐681 (1951) UMH‐3‐F, University of Michigan.
  12. C. S. Wang‐Chang, G. E. Uhlenbeck, and J. de Boer, “The heat conductivity and viscosity of polyatomic gases” (review articles), in Studies in Statistical Mechanics, Vol. 2, edited by de Boer and Uhlenbeck (North‐Holland, Amsterdam, 1964).
  13. This view is consistent with the interpretation of f (S) as a probability distribution in the space of states. See J. H. Ferziger and H. G. Kaper, Mathematical Theory of Transport Processes in Gases (North‐Holland, Amsterdam, 1972), Chap. 3.