User menu

INTEGRAL DECOMPOSITION OF UNBOUNDED OPERATOR FAMILIES

Bibliographic reference
Permanent URL http://hdl.handle.net/2078/31264
  1. Borchers, H.J., Yngvason, J.: On the algebra of field operators. The weak commutant and integral decomposition of states. Commun. Math. Phys.42, 231?252 (1975)
  2. Hegerfeldt, G. C.: Extremal decomposition of Wightman functions and of states on nuclear *-algebras by Choquet theory. Commun. Math. Phys.45, 133?135 (1975)
  3. Choquet, G.: Lectures on analysis, Vol. II. (eds. J. Marsden, J. Lance, S. Gelbart) New York: Benjamin 1969
  4. Schaefer, H. H.: Topological vector spaces. Berlin, Heidelberg, New York: Springer 1971
  5. Lassner, G.: Topological algebras of operators. Rep. Math. Phys.3, 279?293 (1972)
  6. Powers, R. T.: Self-adjoint algebras of unbounded operators. Commun. Math. Phys.21, 85?124 (1971)
  7. Nussbaum, A. E.: Reduction theory for unbounded closed operators in Hilbert space. Duke Math. J.31, 33?44 (1964)
  8. Dixmier, J.: Les algèbres d' opérateurs dans l'espace hilbertien, Paris: Gauthier-Villars 1962
  9. Gudder, S., Scruggs, W.: Unbounded representations of *-algebras. Pacific J. Math.70, 369 (1977)
  10. Kato, T.: Perturbation theory for linear operators. Berlin, Heidelberg, New York: Springer 1966
  11. Grossmann, A.: Elementary properties of nested Hilbert spaces. Commun. Math. Phys.2, 1?30 (1975)
  12. Antoine, J. P., Grossmann, A.: Partial inner product spaces I. General properties. J. Funct. Anal.23, 369?378 (1976)
  13. Debacker-Mathot, Fr.: Some operator algebras in nested Hilbert spaces. Commun. Math. Phys.42, 183?193 (1975)