User menu

ABSENCE OF SYMMETRY BREAKDOWN AND UNIQUENESS OF THE VACUUM FOR MULTICOMPONENT FIELD THEORIES

Bibliographic reference
Permanent URL http://hdl.handle.net/2078/31259
  1. Bricmont, J.: Correlation inequalities for two component fields. Ann. Soc. Sc. Brux.90, 245–252 (1976)
  2. Bricmont, J., Fontaine, J.-R., Landau, L.J.: On the uniqueness of the equilibrium state for plane rotators. Commun. math. Phys.56, 281–296 (1977)
  3. Coleman, S.: There are no Goldstone bosons in two dimensions. Commun. math. Phys.31, 259–264 (1973)
  4. Dobrushin, R.L., Shlosman, S.B.: Absence of breakdown of continuous symmetry in two-dimensional models of statistical physics. Commun. math. Phys.42, 31–40 (1975)
  5. Dunlop, F., Newman, C.: Multicomponent field theories and classical rotators. Commun. math. Phys.44, 223–235 (1975)
  6. Dunlop, F.: Correlation inequalities for multicomponent rotators. Commun. math. Phys.49, 247–256 (1976)
  7. Fröhlich, J.: Marseille conference: Poetic phenomena in (2-dim) quantum field theory: non uniqueness of the vacuum, the solitons and all that, pp. 112–130 (1975)
  8. Fröhlich, J.: New super-selection sectors “soliton-state” in two dimensional bose quantum field models. Commun. math. Phys.47, 269–310 (1976)
  9. Fröhlich, J.: Private communication
  10. Fröhlich, J., Simon, B., Spencer, T.: Infrared bounds, phase transitions, and continuous symmetry breaking. Commun. math. Phys.50, 78–85 (1976)
  11. Gal-Ezer, E.: Spontaneous breakdown in two dimensional space-time. Commun. math. Phys.44, 191–195 (1975)
  12. Ginibre, J.: General formulation of Griffith's inequalities. Commun. math. Phys.16, 310–328 (1970)
  13. Glimm, J., Jaffe, A.: A λφ4 quantum field theory without cutoff. I. Phys. Rev.176, 1945–1951 (1968)
  14. Glimm, J., Jaffe, A.: The λφ4 quantum field theory without cutoffs. II. The field operators and the approximate vacuum. Ann. Math.91, 362–401 (1970)
  15. Glimm, J., Jaffe, A.: The λφ4 quantum field theory without cutoffs. III. The physical vacuum. Acta Math.125, 203–261 (1970)
  16. Glimm, J., Jaffe, A.: The λ(φ4)2 quantum field theory without cutoffs. IV. Perturbations of the hamiltonian. J. Math. Phys.13, 1568–1584 (1972)
  17. Glimm, J., Jaffe, A.: The energy momentum spectrum and vacuum expectation values in quantum field theories. II. Commun. math. Phys.22, 1–22 (1971)
  18. Glimm, J., Jaffe, A.: Quantum field theory models in statistical mechanics and quantum field theory. Dewitt, C., Stora, R. (eds.). New York: Gordon and Breach 1971
  19. Glimm, J., Spencer, T.: The Wightman axioms and the mass gap for theP(φ)2 quantum field theory (preprint)
  20. Glimm, J., Jaffe, A.: Ann. Inst. H. Poincaré Sect. A22, 109 (1975)
  21. Guerra, F., Rosen, L., Simon, B.: TheP(φ)2 euclidean quantum field theory as classical statistical mechanics. Ann. Math.101, 111–259 (1975)
  22. Guerra, F., Rosen, L., Simon, B.: Boundary conditions for theP(φ)2 euclidean field theory. Ann. inst. H. Poincaré Sect. A25, 231–334 (1976)
  23. Heifets, E.P., Osipov, E.P.: The energy momentum spectrum in theP(φ)2 quantum field theory. Commun. math. Phys.56, 161–172 (1977)
  24. Kunz, H., Pfister, Ch.Ed, Vuillermot, P.A.: Inequalities for some classical spin vector models. J. Ph. A Math. and Gen.9, 1673 (1976)
  25. Reed, M., Simon, B.: Methods of modern mathematical physics. I. Functional analysis. New York, London: Academic Press 1972
  26. Reed, M., Simon, B.: Methods of modern mathematical physics. II. Fourier analysis self adjointness. New York, London: Academic Press 1975
  27. Reeh, H.: Symmetry operations and spontaneously broken symmetries in relativistic quantum field. Fortschr. Physik16, 687–706 (1968)
  28. Rosen, L.: A λφ2n field theory: Higher order estimates. Com. Pure Appl. Math.24, 417–457 (1971)
  29. Segal, I.: Notes torward the construction of non linear relativistic quantum fields. Proc. Nat. Acad. Sci. USA37, 1178 (1967)
  30. Simon, B.: TheP(φ)2 euclidean (quantum) field theory. Princeton: Princeton University Press 1974
  31. Spencer, T.: Perturbations of theP(φ)2 quantum field Hamiltonian. J. Math. Phys.14, 823–828 (1973)
  32. Spencer, T.: The mass gap for theP(φ)2 quantum field model with a strong external field. Commun. math. Phys.39, 63–76 (1974)
  33. Vilenkin, N.Ja: Fonctions spéciales et théorie de la représentation des groupes. Paris: Dunod 1969