User menu

Boundary monomers in the dimer model

Bibliographic reference
Permanent URL http://hdl.handle.net/2078/31193
  1. Fowler R. H., Rushbrooke G. S., An attempt to extend the statistical theory of perfect solutions, 10.1039/tf9373301272
  2. Kasteleyn P.W., The statistics of dimers on a lattice, 10.1016/0031-8914(61)90063-5
  3. Kasteleyn P. W., Dimer Statistics and Phase Transitions, 10.1063/1.1703953
  4. Fisher Michael E., Statistical Mechanics of Dimers on a Plane Lattice, 10.1103/physrev.124.1664
  5. Temperley H. N. V., Fisher Michael E., Dimer problem in statistical mechanics-an exact result, 10.1080/14786436108243366
  6. Ferdinand Arthur E., Statistical Mechanics of Dimers on a Quadratic Lattice, 10.1063/1.1705162
  7. Wu F. Y., Remarks on the Modified Potassium Dihydrogen Phosphate Model of a Ferroelectric, 10.1103/physrev.168.539
  8. Fisher Michael E., Stephenson John, Statistical Mechanics of Dimers on a Plane Lattice. II. Dimer Correlations and Monomers, 10.1103/physrev.132.1411
  9. Hartwig Robert E., Monomer Pair Correlations, 10.1063/1.1704931
  10. Tzeng W.-J., Wu F. Y., 10.1023/a:1022155701655
  11. Wu F. Y., Pfaffian solution of a dimer-monomer problem: Single monomer on the boundary, 10.1103/physreve.74.020104
  12. Wu F. Y., Erratum: Pfaffian solution of a dimer-monomer problem: Single monomer on the boundary [Phys. Rev. E74, 020104(R) (2006)], 10.1103/physreve.74.039907
  13. Krauth Werner, Moessner R., Pocket Monte Carlo algorithm for classical doped dimer models, 10.1103/physrevb.67.064503
  14. Kong Yong, Logarithmic corrections in the free energy of monomer-dimer model on plane lattices with free boundaries, 10.1103/physreve.74.011102
  15. Fendley P., Moessner R., Sondhi S. L., Classical dimers on the triangular lattice, 10.1103/physrevb.66.214513
  16. Fan Chungpeng, Wu F. Y., General Lattice Model of Phase Transitions, 10.1103/physrevb.2.723
  17. Izmailian N. Sh., Priezzhev V. B., Ruelle Philippe, Hu Chin-Kun, Logarithmic Conformal Field Theory and Boundary Effects in the Dimer Model, 10.1103/physrevlett.95.260602
  18. H. Au-Yang, Phys. Lett., 104A, 131 (1984)
  19. Kenyon Richard, Dominos and the Gaussian Free Field, 10.1214/aop/1015345599
  20. Papanikolaou Stefanos, Luijten Erik, Fradkin Eduardo, Quantum criticality, lines of fixed points, and phase separation in doped two-dimensional quantum dimer models, 10.1103/physrevb.76.134514
  21. C. Krattenthaler, Sém. Lothar. Combin., 42, B42q (1999)
  22. H. N. V. Temperley, Combinatorics: Proceedings of the British Combinatorial Conference (1974)
  23. N. Sh. Izmailian, Symmetry, Integr. Geom.: Methods Appl., 3, 001 (2007)
  24. P. Ruelle, J. Stat. Mech.: Theory Exp., 2007, P09013
  25. Piroux Geoffroy, Ruelle Philippe, Pre-logarithmic and logarithmic fields in a sandpile model, 10.1088/1742-5468/2004/10/p10005