User menu

Topological Background Fields as Quantum Degrees of Freedom of Compactified Strings

Bibliographic reference
Permanent URL
  1. Polchinski Joseph, D-branes, String Theory ISBN:9780511618123 p.136-177, 10.1017/cbo9780511618123.007
  2. Johnson C. V., D-branes (2003)
  3. Narain K.S., Sarmadi M.H., Witten E., A note on toroidal compactification of heterotic string theory, 10.1016/0550-3213(87)90001-0
  4. Ginsparg Paul, On toroidal compactification of heterotic superstrings, 10.1103/physrevd.35.648
  5. Ginsparg P., Vafa C., Toroidal compactification of non-supersymmetric heterotic strings, 10.1016/0550-3213(87)90387-7
  6. Govaerts J., Int. J. Mod. Phys. A, 15, 4903
  7. Laidlaw Michael G. G., DeWitt Cécile Morette, Feynman Functional Integrals for Systems of Indistinguishable Particles, 10.1103/physrevd.3.1375
  8. Schulman L. S., Approximate Topologies, 10.1063/1.1665592
  9. McLaughlin David W., Schulman L. S., Path Integrals in Curved Spaces, 10.1063/1.1665567
  10. Horváthy P.A., Quantisation in multiply connected spaces, 10.1016/0375-9601(80)90133-4
  11. Schulman L. S., Techniques and Applications of Path Integration (1981)
  12. Green M. B., Superstring Theory (1987)
  13. Lerchie W., Schellekens A.N., Warner N.P., Lattices and strings, 10.1016/0370-1573(89)90077-x
  14. Giveon Amit, Porrati Massimo, Rabinovici Eliezer, Target space duality in string theory, 10.1016/0370-1573(94)90070-1