User menu

Logarithmic Conformal Field Theory and Boundary Effects in the Dimer Model

Bibliographic reference
Permanent URL
  1. Privman Valdimir, Fisher Michael E., Universal critical amplitudes in finite-size scaling, 10.1103/physrevb.30.322
  2. Finite-Size Scaling and Numerical Simulation of Statistical Systems (1990)
  3. Lee Koo-Chul, Monte Carlo technique for universal finite-size-scaling functions: Application to the 3-state Potts model on a square lattice, 10.1103/physrevlett.69.9
  4. Hu Chin-Kun, Lin Chai-Yu, Chen Jau-Ann, Universal Scaling Functions in Critical Phenomena, 10.1103/physrevlett.75.193
  5. Hu Chin-Kun, Lin Chai-Yu, Chen Jau-Ann, Universal Scaling Functions in Critical Phenomena, 10.1103/physrevlett.75.2786
  6. Hu Chin-Kun, Lin Chai-Yu, Universal Scaling Functions for Numbers of Percolating Clusters on Planar Lattices, 10.1103/physrevlett.77.8
  7. Izmailian N. Sh., Hu Chin-Kun, Exact Universal Amplitude Ratios for Two-Dimensional Ising Models and a Quantum Spin Chain, 10.1103/physrevlett.86.5160
  8. Izmailian N. Sh., Hu Chin-Kun, Exact amplitude ratio and finite-size corrections for theM×Nsquare lattice Ising model, 10.1103/physreve.65.036103
  9. Izmailian N. Sh., Oganesyan K. B., Hu Chin-Kun, Exact finite-size corrections for the square-lattice Ising model with Brascamp-Kunz boundary conditions, 10.1103/physreve.65.056132
  10. Wu Ming-Chya, Hu Chin-Kun, Izmailian N. Sh., Universal finite-size scaling functions with exact nonuniversal metric factors, 10.1103/physreve.67.065103
  11. Ivashkevich E V, Izmailian N Sh, Hu Chin-Kun, Kronecker$apos$s double series and exact asymptotic expansions for free models of statistical mechanics on torus, 10.1088/0305-4470/35/27/302
  12. Izmailian N. Sh., Oganesyan K. B., Hu Chin-Kun, Exact finite-size corrections of the free energy for the square lattice dimer model under different boundary conditions, 10.1103/physreve.67.066114
  13. Belavin A.A., Polyakov A.M., Zamolodchikov A.B., Infinite conformal symmetry in two-dimensional quantum field theory, 10.1016/0550-3213(84)90052-x
  14. Dotsenko Vl.S., Fateev V.A., Conformal algebra and multipoint correlation functions in 2D statistical models, 10.1016/0550-3213(84)90269-4
  15. Blöte H. W. J., Cardy John L., Nightingale M. P., Conformal invariance, the central charge, and universal finite-size amplitudes at criticality, 10.1103/physrevlett.56.742
  16. Affleck Ian, Universal term in the free energy at a critical point and the conformal anomaly, 10.1103/physrevlett.56.746
  17. Cardy John L., Effect of boundary conditions on the operator content of two-dimensional conformally invariant theories, 10.1016/0550-3213(86)90596-1
  18. Tzeng W.-J., Wu F. Y., 10.1023/a:1022155701655
  19. Chakravarty Sudip, Theory of thed-density wave from a vertex model and its implications, 10.1103/physrevb.66.224505
  20. Fan Chungpeng, Wu F. Y., General Lattice Model of Phase Transitions, 10.1103/physrevb.2.723
  21. Kasteleyn P.W., The statistics of dimers on a lattice, 10.1016/0031-8914(61)90063-5
  22. Kasteleyn P. W., Dimer Statistics and Phase Transitions, 10.1063/1.1703953
  23. Fisher Michael E., Statistical Mechanics of Dimers on a Plane Lattice, 10.1103/physrev.124.1664
  24. Temperley H. N. V., Fisher Michael E., Dimer problem in statistical mechanics-an exact result, 10.1080/14786436108243366
  25. R. J. Baxter, Exactly Solved Models in Statistical Mechanics (1982)
  26. Fisher Michael E., Stephenson John, Statistical Mechanics of Dimers on a Plane Lattice. II. Dimer Correlations and Monomers, 10.1103/physrev.132.1411
  27. Hartwig Robert E., Monomer Pair Correlations, 10.1063/1.1704931
  28. Wu F. Y., Remarks on the Modified Potassium Dihydrogen Phosphate Model of a Ferroelectric, 10.1103/physrev.168.539
  29. Itzykson C, Saleur H, Zuber J.-B, Conformal Invariance of Nonunitary 2d-Models, 10.1209/0295-5075/2/2/004
  30. H. N. V. Temperley, Combinatorics: Proceedings of the British Combinatorial Conference (1974)
  31. Majumdar S.N., Dhar Deepak, Equivalence between the Abelian sandpile model and the q→0 limit of the Potts model, 10.1016/0378-4371(92)90447-x
  32. Ruelle Philippe, A c=−2 boundary changing operator for the Abelian sandpile model, 10.1016/s0370-2693(02)02069-5
  33. Piroux Geoffroy, Ruelle Philippe, Pre-logarithmic and logarithmic fields in a sandpile model, 10.1088/1742-5468/2004/10/p10005
  34. Piroux Geoffroy, Ruelle Philippe, Logarithmic scaling for height variables in the Abelian sandpile model, 10.1016/j.physletb.2004.12.045
  35. Gaberdiel Matthias R., Kausch Horst G., A rational logarithmic conformal field theory, 10.1016/0370-2693(96)00949-5
  36. Gaberdiel Matthias R., Kausch Horst G., A local logarithmic conformal field theory, 10.1016/s0550-3213(98)00701-9
  37. Saleur H., Polymers and percolation in two dimensions and twisted N = 2 supersymmetry, 10.1016/0550-3213(92)90657-w
  38. Ferdinand Arthur E., Statistical Mechanics of Dimers on a Quadratic Lattice, 10.1063/1.1705162