Abstract |
: |
[eng] In a remarkable variety of contexts appears the modular data associated to
finite groups. And yet, compared to the well-understood affine algebra modular
data, the general properties of this finite group modular data has been poorly
explored. In this paper we undergo such a study. We identify some senses in
which the finite group data is similar to, and different from, the affine data.
We also consider the data arising from a cohomological twist, and write down,
explicitly in terms of quantities associated directly with the finite group,
the modular S and T matrices for a general twist, for what appears to be the
first time in print.
Comment: 38 pp, latex; 5 references added, "questions" section touched-up |