User menu

Lattice based extended formulations for integer linear equality systems

Bibliographic reference Aardal, Karen. Lattice based extended formulations for integer linear equality systems. In: Mathematical Programming A, Vol. 121, no. 2, p. 337-353 (Février 2010)
Permanent URL
  1. Aardal K., Bixby R.E., Hurkens C.A.J., Lenstra A.K., Smeltink J.W.: Market split and basis reduction: Towards a solution of the Cornuéjols-Dawande instances. INFORMS J. Comput. 12, 192–202 (2000)
  2. Aardal K., Hurkens C.A.J., Lenstra A.K.: Solving a system of diophantine equations with lower and upper bounds on the variables. Math. Oper. Res. 25, 427–442 (2000)
  3. Aardal, K., Lenstra, A.K.: Hard equality constrained integer knapsacks. Mathematics of Operations Research, 29(3), 724–738 (2004). Erratum: Mathematics of Operations Research, 31(4), p. 846 (2006)
  4. Andersen, K., Pochet, Y.: Coefficient strengthening: a tool for formulating mixed integer programs. CORE DP 2007/24, Université catholique de Louvain (2007)
  5. Bradley G.H.: Transformation of integer programs to knapsack problems. Discrete Math. 1, 29–45 (1971)
  6. Bradley G.H.: Equivalent integer programs and canonical problems. Manage. Sci. 17, 354–366 (1971)
  7. Bradley G.H., Hammer P.L., Wolsey L.A.: Coefficient reduction for inequalities in 0-1 variables. Math. Program. 7, 263–282 (1974)
  8. Cassels, J.W.S.: An Introduction to the Geometry of Numbers. Classics in Mathematics. Springer, Berlin (1997). Second Printing, Corrected, Reprint of the 1971 ed.
  9. Cornuéjols G., Dawande M.: A class of hard small 0-1 programs. INFORMS J. Comput. 11, 205–210 (1999)
  10. Cornuéjols G., Urbaniak R., Weismantel R., Wolsey L.A.: Decomposition of integer programs and of generating sets. In: Burkard, R.E., Woeginger, G.J.(eds) Algorithms–ESA ’97. Lecture Notes in Computer Science, vol. 1284, pp. 92–103. Springer, Berlin (1997)
  11. Kannan R.: Algorithmic geometry of numbers. Annu. Rev. Comput. Sci. 2, 231–267 (1987)
  12. Kannan R., Bachem A.: Polynomial algorithms for computing the Smith and Hermite normal forms of an integer matrix. SIAM J. Comput. 8, 499–507 (1979)
  13. Karamanov, M., Cornuéjols, G.: Branching on general disjunctions. Working paper, Tepper School of Business, Carnegie Mellon University (2005). Revised September 2007. To appear in: Chvátal, V., Sbihi, N. (eds.) Proceedings of the Montreal 2006 NATO Conference
  14. Lenstra A.K., Lenstra H.W. Jr, Lovász L.: Factoring polynomials with rational coefficients. Math. Ann. 261, 515–534 (1982)
  15. Lenstra H.W. Jr.: Flags and lattice basis reduction. In: Casacuberta, C., Miró-Roig, R.M., Verdera, J., Xambó-Descamps, S.(eds) Proceedings of the third European Congress of Mathematics, vol. I, pp. 37–51. Birkhäuser Verlag, Basel (2000)
  16. Lenstra, H.W. Jr.: Lattices. To appear in: Surveys in Algorithmic Number Theory, Mathematical Sciences Research Institute Publications, Cambridge University Press, Cambridge (2005)
  17. Lovász László, An Algorithmic Theory of Numbers, Graphs and Convexity, ISBN:9780898712032, 10.1137/1.9781611970203
  18. Louveaux Q., Wolsey L.A.: Combining problem structure with basis reduction to solve a class of hard integer programs. Math. Oper. Res. 27(3), 470–484 (2002)
  19. Martin R.K., Schrage L.: Subset coefficient reduction cuts for 0-1 mixed integer programming. Oper. Res. 33, 505–526 (1985)
  20. Padberg M.W.: Equivalent knapsack-type formulations of bounded integer programs: an alternative approach. Naval Res. Log. Q. 19, 699–708 (1972)
  21. Schrijver A.: Theory of Linear and Integer Programming. Wiley, Chichester (1986)
  22. Xpress-MP Optimization Software. Dash optimization.