User menu

A periplasmic reducing system protects single cysteine residues from oxidation

Bibliographic reference Depuydt, Matthieu ; Leonard, Stephen E ; Vertommen, Didier ; Denoncin, Katleen ; Morsomme, Pierre ; et. al. A periplasmic reducing system protects single cysteine residues from oxidation. In: Science, Vol. 326, no. 5956, p. 1109-1111 (2009)
Permanent URL
  1. Messens Joris, Collet Jean-François, Pathways of disulfide bond formation in Escherichia coli, 10.1016/j.biocel.2005.12.011
  2. Bessette Paul H., Cotto José J., Gilbert Hiram F., Georgiou George, In Vivoandin VitroFunction of theEscherichia coliPeriplasmic Cysteine Oxidoreductase DsbG, 10.1074/jbc.274.12.7784
  3. Heras B., Edeling M. A., Schirra H. J., Raina S., Martin J. L., Crystal structures of the DsbG disulfide isomerase reveal an unstable disulfide, 10.1073/pnas.0402769101
  4. Balmer Y., Vensel W. H., Tanaka C. K., Hurkman W. J., Gelhaye E., Rouhier N., Jacquot J.-P., Manieri W., Schurmann P., Droux M., Buchanan B. B., Thioredoxin links redox to the regulation of fundamental processes of plant mitochondria, 10.1073/pnas.0308583101
  5. Kadokura H., Snapshots of DsbA in Action: Detection of Proteins in the Process of Oxidative Folding, 10.1126/science.1091724
  6. Mainardi Jean-Luc, Hugonnet Jean-Emmanuel, Rusconi Filippo, Fourgeaud Martine, Dubost Lionel, Moumi Angèle Nguekam, Delfosse Vanessa, Mayer Claudine, Gutmann Laurent, Rice Louis B., Arthur Michel, Unexpected Inhibition of Peptidoglycan LD-Transpeptidase fromEnterococcus faeciumby the β-Lactam Imipenem, 10.1074/jbc.m704286200
  7. Magnet S., Bellais S., Dubost L., Fourgeaud M., Mainardi J.-L., Petit-Frere S., Marie A., Mengin-Lecreulx D., Arthur M., Gutmann L., Identification of the L,D-Transpeptidases Responsible for Attachment of the Braun Lipoprotein to Escherichia coli Peptidoglycan, 10.1128/jb.00084-07
  8. Messens Joris, Molle Inge Van, Vanhaesebrouck Peter, Limbourg Maya, Belle Karolien Van, Wahni Khadija, Martins José C, Loris Remy, Wyns Lode, How Thioredoxin can Reduce a Buried Disulphide Bond, 10.1016/j.jmb.2004.04.016
  9. Rietsch A, Bessette P, Georgiou G, Beckwith J, Reduction of the periplasmic disulfide bond isomerase, DsbC, occurs by passage of electrons from cytoplasmic thioredoxin., 10.1128/jb.179.21.6602-6608.1997
  10. Seaver L. C., Imlay J. A., Alkyl Hydroperoxide Reductase Is the Primary Scavenger of Endogenous Hydrogen Peroxide in Escherichia coli, 10.1128/jb.183.24.7173-7181.2001
  11. Eser M., Masip L., Kadokura H., Georgiou G., Beckwith J., Disulfide bond formation by exported glutaredoxin indicates glutathione's presence in the E. coli periplasm, 10.1073/pnas.0812596106
  12. Reddie Khalilah G, Carroll Kate S, Expanding the functional diversity of proteins through cysteine oxidation, 10.1016/j.cbpa.2008.07.028
  13. Takanishi, Biochemistry (Easton), 46, 14725 (2007)
  14. Paulsen Candice E., Carroll Kate S., Chemical Dissection of an Essential Redox Switch in Yeast, 10.1016/j.chembiol.2009.01.003
  15. Reddie Khalilah G., Seo Young Ho, Muse III Wilson B., Leonard Stephen E., Carroll Kate S., A chemical approach for detecting sulfenic acid-modified proteins in living cells, 10.1039/b719986d
  16. Lee J.-W., Soonsanga S., Helmann J. D., A complex thiolate switch regulates the Bacillus subtilis organic peroxide sensor OhrR, 10.1073/pnas.0702081104
  17. Leonard Stephen E., Reddie Khalilah G., Carroll Kate S., Mining the Thiol Proteome for Sulfenic Acid Modifications Reveals New Targets for Oxidation in Cells, 10.1021/cb900105q
  18. Dutton R. J., Boyd D., Berkmen M., Beckwith J., Bacterial species exhibit diversity in their mechanisms and capacity for protein disulfide bond formation, 10.1073/pnas.0804621105
  19. Poole Leslie B, Nelson Kimberly J, Discovering mechanisms of signaling-mediated cysteine oxidation, 10.1016/j.cbpa.2008.01.021