Accès à distance ? S'identifier sur le proxy UCLouvain
Denoising proton therapy Monte Carlo dose distributions in multiple tumor sites: A comparative neural networks architecture study.
Primary tabs
- Open access
- 337.23 K
Document type | Article de périodique (Journal article) – Article de recherche |
---|---|
Access type | Accès libre |
Publication date | 2021 |
Language | Anglais |
Journal information | "Physica medica" - Vol. 89, p. 93-103 (2021) |
Peer reviewed | yes |
Publisher | Istituti Editoriali e Poligrafici Internazionali ((Italy) Pisa) |
issn | 1120-1797 |
e-issn | 1724-191X |
Publication status | Publié |
Affiliations |
UCL
- SSS/IREC/MIRO - Pôle d'imagerie moléculaire, radiothérapie et oncologie UCL - SST/ICTM/ELEN - Pôle en ingénierie électrique |
MESH Subject | Algorithms ; Humans ; Monte Carlo Method ; Neoplasms ; Neural Networks, Computer ; Phantoms, Imaging ; Proton Therapy ; Radiotherapy Dosage ; Radiotherapy Planning, Computer-Assisted |
Keywords | Artificial intelligence ; Convolutional neural networks ; Dose denoising ; Monte Carlo ; Proton therapy |
Links |
Bibliographic reference | Javaid, Umair ; Souris, Kevin ; Huang, Sheng ; Lee, John Aldo. Denoising proton therapy Monte Carlo dose distributions in multiple tumor sites: A comparative neural networks architecture study.. In: Physica medica, Vol. 89, p. 93-103 (2021) |
---|---|
Permanent URL | http://hdl.handle.net/2078.1/264313 |