Accès à distance ? S'identifier sur le proxy UCLouvain
Estimating uncertainty in radiation oncology dose prediction with dropout and bootstrap in U-Net models
Primary tabs
- Open access
- 1.86 M
Document type | Communication à un colloque (Conference Paper) |
---|---|
Access type | Accès libre |
Publication date | 2021 |
Language | Anglais |
Conference | "ESANN 2021 - European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning", Online event (Bruges, Belgium) (du 6/10/2021 au 8/10/2021) |
Journal information | "ESANN 2021 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning" |
Peer reviewed | yes |
Publication status | Publié |
Affiliation | UCL - SSH/IACS - Institute of Analysis of Change in Contemporary and Historical Societies |
Links |
Bibliographic reference | John, Lee ; Vanginderdeuren, Alyssa ; Huet-Dastarac, Margerie ; Barragan Montero, Ana Maria. Estimating uncertainty in radiation oncology dose prediction with dropout and bootstrap in U-Net models.ESANN 2021 - European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning (Online event (Bruges, Belgium), du 6/10/2021 au 8/10/2021). In: ESANN 2021 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, |
---|---|
Permanent URL | http://hdl.handle.net/2078.1/257291 |