User menu

The yeast Wsc1 cell surface sensor behaves like a nanospring in vivo.

Bibliographic reference Dupres, Vincent ; Alsteens, David ; Wilk, Sabrina ; Hansen, Benjamin ; Heinisch, Jürgen J ; et. al. The yeast Wsc1 cell surface sensor behaves like a nanospring in vivo.. In: Nature Chemical Biology, Vol. 5, no. 11, p. 857-862 (2009)
Permanent URL
  1. Klis Frans M., Boorsma Andre, De Groot Piet W. J., Cell wall construction inSaccharomyces cerevisiae, 10.1002/yea.1349
  2. Levin D. E., Cell Wall Integrity Signaling in Saccharomyces cerevisiae, 10.1128/mmbr.69.2.262-291.2005
  3. Straede Andrea, Heinisch Jürgen J., Functional analyses of the extra- and intracellular domains of the yeast cell wall integrity sensors Mid2 and Wsc1, 10.1016/j.febslet.2007.08.027
  4. Piao H. L., Machado I. M.P., Payne G. S., NPFXD-mediated Endocytosis Is Required for Polarity and Function of a Yeast Cell Wall Stress Sensor, 10.1091/mbc.e06-08-0721
  5. Heinisch Jürgen J, Baker's yeast as a tool for the development of antifungal drugs which target cell integrity – an update, 10.1517/17460441.3.8.931
  6. Rodicio Rosaura, Buchwald Ulf, Schmitz Hans-Peter, Heinisch Jürgen J., Dissecting sensor functions in cell wall integrity signaling in Kluyveromyces lactis, 10.1016/j.fgb.2007.07.009
  7. Rief M., Reversible Unfolding of Individual Titin Immunoglobulin Domains by AFM, 10.1126/science.276.5315.1109
  8. Fernandez Julio M., Oberhauser Andres F., Marszalek Piotr E., Erickson Harold P., 10.1038/30270
  9. Oesterhelt F., Unfolding Pathways of Individual Bacteriorhodopsins, 10.1126/science.288.5463.143
  10. Fernandez J. M., Force-Clamp Spectroscopy Monitors the Folding Trajectory of a Single Protein, 10.1126/science.1092497
  11. Vogel Viola, Sheetz Michael, Local force and geometry sensing regulate cell functions, 10.1038/nrm1890
  12. Sotomayor M., Schulten K., Single-Molecule Experiments in Vitro and in Silico, 10.1126/science.1137591
  13. Müller Daniel J., Dufrêne Yves F., Atomic force microscopy as a multifunctional molecular toolbox in nanobiotechnology, 10.1038/nnano.2008.100
  14. Ahimou François, Touhami Ahmed, Dufrêne Yves F., Real-time imaging of the surface topography of living yeast cells by atomic force microscopy : AFM imaging of yeast cells, 10.1002/yea.923
  15. Koch Y., Can. J. Microbiol., 26, 965 (1980)
  16. Verbelen Claire, Gruber Hermann J., Dufrêne Yves F., The NTA–His6 bond is strong enough for AFM single-molecular recognition studies, 10.1002/jmr.833
  17. Merkel R., Nassoy P., Leung A., Ritchie K., Evans E., Energy landscapes of receptor–ligand bonds explored with dynamic force spectroscopy, 10.1038/16219
  18. Hinterdorfer Peter, Dufrêne Yves F, Detection and localization of single molecular recognition events using atomic force microscopy, 10.1038/nmeth871
  19. Lata Suman, Reichel Annett, Brock Roland, Tampé Robert, Piehler Jacob, High-Affinity Adaptors for Switchable Recognition of Histidine-Tagged Proteins, 10.1021/ja050690c
  20. Krieg Michael, Helenius Jonne, Heisenberg Carl-Philipp, Muller Daniel J., A Bond for a Lifetime: Employing Membrane Nanotubes from Living Cells to Determine Receptor-Ligand Kinetics, 10.1002/anie.200803552
  21. Willer T, O-mannosyl glycans: from yeast to novel associations with human disease, 10.1016/
  22. Jentoft Neil, Why are proteins O-glycosylated?, 10.1016/0968-0004(90)90014-3
  23. Lodder A.L., Genetics, 152, 1487 (1999)
  24. Rajavel Mathumathi, Philip Bevin, Buehrer Benjamin M., Errede Beverly, Levin David E., Mid2 Is a Putative Sensor for Cell Integrity Signaling inSaccharomyces cerevisiae, 10.1128/mcb.19.6.3969
  25. Philip B., Levin D. E., Wsc1 and Mid2 Are Cell Surface Sensors for Cell Wall Integrity Signaling That Act through Rom2, a Guanine Nucleotide Exchange Factor for Rho1, 10.1128/mcb.21.1.271-280.2001
  26. Lommel M., Bagnat M., Strahl S., Aberrant Processing of the WSC Family and Mid2p Cell Surface Sensors Results in Cell Death of Saccharomyces cerevisiae O-Mannosylation Mutants, 10.1128/mcb.24.1.46-57.2004
  27. Powell C. D., Chitin scar breaks in aged Saccharomyces cerevisiae, 10.1099/mic.0.25940-0
  28. Lee Gwangrog, Abdi Khadar, Jiang Yong, Michaely Peter, Bennett Vann, Marszalek Piotr E., Nanospring behaviour of ankyrin repeats, 10.1038/nature04437
  29. Schlierf Michael, Rief Matthias, Temperature Softening of a Protein in Single-molecule Experiments, 10.1016/j.jmb.2005.09.070
  30. Law Richard, Liao George, Harper Sandy, Yang Guoliang, Speicher David W., Discher Dennis E., Pathway Shifts and Thermal Softening in Temperature-Coupled Forced Unfolding of Spectrin Domains, 10.1016/s0006-3495(03)74747-x
  31. Dubreuil Ronald R., Functional Links between Membrane Transport and the Spectrin Cytoskeleton, 10.1007/s00232-006-0863-y
  32. Julien M. A., Wang P., Haller C. A., Wen J., Chaikof E. L., Mechanical strain regulates syndecan-4 expression and shedding in smooth muscle cells through differential activation of MAP kinase signaling pathways, 10.1152/ajpcell.00093.2006
  33. Becker Nathan, Oroudjev Emin, Mutz Stephanie, Cleveland Jason P., Hansma Paul K., Hayashi Cheryl Y., Makarov Dmitrii E., Hansma Helen G., Molecular nanosprings in spider capture-silk threads, 10.1038/nmat858
  34. Straede Andrea, Corran Andy, Bundy James, Heinisch Jürgen J., The effect of tea tree oil and antifungal agents on a reporter for yeast cell integrity signalling, 10.1002/yea.1478
  35. Arvanitidis A., J. Biol. Chem., 269, 8911 (1994)
  36. Gietz R.Daniel, Akio Sugino, New yeast-Escherichia coli shuttle vectors constructed with in vitro mutagenized yeast genes lacking six-base pair restriction sites, 10.1016/0378-1119(88)90185-0