User menu

Accès à distance ? S'identifier sur le proxy UCLouvain

31P NMR saturation transfer study of the creatine kinase reaction in human skeletal muscle at rest and during exercise

  • Open access
  • PDF
  • 1.32 M
  1. Forsen, J. Chem. Phys., 39, 2892 (1963)
  2. Jacobus, J. Biol. Chem., 248, 4803 (1973)
  3. Saks, J. Biol. Chem., 255, 755 (1980)
  4. , in “Heart Creatine Kinase, the integration of isozymes for energy distribution,” pp. 1, and Editors, Williams & Wilkins, Baltimore, MD, 1980.
  5. Goudemant, NMR Biomed., 7, 101 (1994)
  6. Goudemant, J. Magn. Res., 106, 212 (1995)
  7. Bittl, J. Biol. Chem., 260, 3512 (1985)
  8. Ingwall, Bas. Res. Cardial., 82, 93 (1987)
  9. Perry, Biochem., 27, 2165 (1988)
  10. , , in “NMR spectroscopy of cells and organisms,” vol. II, pp. 51–68, CRC Press, Editor, Boca Raton, Florida-USA, 1987.
  11. Matthews, Biochim. Biophys. Acta., 721, 312 (1982)
  12. Martin Joel F., Guth Brian D., Griffey Richard H., Hoekenga David E., Myocardial creatine kinase exchange rates and31P NMR relaxation rates in intact pigs, 10.1002/mrm.1910110106
  13. Rees, Magn. Res. Med., 9, 39 (1989)
  14. Le Rumeur, Magn. Res. Med., 24, 335 (1992)
  15. Shoubridge, Biochim. Biophys. Acta, 805, 72 (1984)
  16. Gadian D G, Radda G K, Brown T R, Chance E M, Dawson M J, Wilkie D R, The activity of creatine kinase in frog skeletal muscle studied by saturation-transfer nuclear magnetic resonance, 10.1042/bj1940215
  17. Yoshizaki, NMR Biomed., 4, 25 (1991)
  18. Bessman, Science, 211, 448 (1981)
  19. Meyer, Am. J. Physiol., 246, c365 (1984)
  20. Ugurbil, Biochem., 25, 100 (1986)
  21. Morrison JF, James E, The mechanism of the reaction catalysed by adenosine triphosphate-creatine phosphotransferase, 10.1042/bj0970037
  22. Morrison, J. Biol. Chem., 241, 673 (1966)
  23. Schimerlik, J. Biol. Chem., 248, 8418 (1973)
  24. Bittl, Biochem., 26, 6083 (1987)
  25. , “Analysis of NMR data using time domain fitting procedures” in NMR Basic Principles and Progress, vol. 26, pp. 201–248, , , , , Editors, Springer-Verlag, Berlin (1992).
  26. Harris, Scand. J. Clin. Lab. Invest., 33, 109 (1974)
  27. Bylund-Fellenius A C, Walker P M, Elander A, Holm S, Holm J, Scherstén T, Energy metabolism in relation to oxygen partial pressure in human skeletal muscle during exercise, 10.1042/bj2000247
  28. Koretsky, Biochem., 25, 77 (1986)
  29. Lawson, J. Biol. Chem., 254, 6528 (1979)
  30. Morris, J. Magn. Reson., 29, 433 (1978)
  31. Bittl J. A., Balschi J. A., Ingwall J. S., Contractile failure and high-energy phosphate turnover during hypoxia: 31P-NMR surface coil studies in living rat, 10.1161/01.res.60.6.871
  32. McFarland, Biophys. J., 67, 1912 (1994)
  33. Milner-White E. J., Watts D. C., Inhibition of adenosine 5′-triphosphate–creatine phosphotransferase by substrate–anion complexes. Evidence for the transition-state organization of the catalytic site, 10.1042/bj1220727
  34. Reed, J. Biol. Chem., 247, 3073 (1972)
  35. Tsung, Clin. Chem., 22, 173 (1976)
  36. Matthews, Biochim. Biophys. Acta, 763, 140 (1983)
  37. Kushmerick, Am. J. Physiol, 248, c542 (1985)
  38. Chance, Circulation, 72, 103 (1985)
  39. Brindle Kevin M., Porteous Roderick, Radda George K., A comparison of 31P-NMR saturation transfer and isotope-exchange measurements of creatine kinase kinetics in vitro, 10.1016/0167-4838(84)90148-1
  40. Wallimann, Current biology, 1, 42 (1994)
  41. Bessman, Ann. Rev. Biochem., 54, 831 (1985)
  42. McGilvery, J. Biol. Chem., 249, 5845 (1974)
  43. Allen D. G., Orchard C. H., Myocardial contractile function during ischemia and hypoxia, 10.1161/01.res.60.2.153
  44. Meyer, Am. J. Physiol., 248, c279 (1985)
  45. Bernus, Med. Sci. Sports Exerc., 25, 1299 (1993)
  46. Borges, Acta Physiol. Scand., 136, 29 (1989)
  47. Ball-Burnett M, Green H J, Houston M E, Energy metabolism in human slow and fast twitch fibres during prolonged cycle exercise., 10.1113/jphysiol.1991.sp018594
  48. Pette, Pflugers Arch, 338, 257 (1973)
  49. Kushmerick, Proc. Natl. Acad. Sci. USA, 89, 7521 (1992)
  50. Park, Proc. Natl. Acad. Sci. USA, 84, 8976 (1987)
  51. Kupriyanov, Biochim. Biophys. Acta, 805, 319 (1984)
  52. Williams, Biochem. Int., 26, 35 (1992)
  53. Wallimann T, Wyss M, Brdiczka D, Nicolay K, Eppenberger H M, Intracellular compartmentation, structure and function of creatine kinase isoenzymes in tissues with high and fluctuating energy demands: the ‘phosphocreatine circuit’ for cellular energy homeostasis, 10.1042/bj2810021
Bibliographic reference Goudemant, Jean-François ; Francaux, Marc ; Mottet, Isabelle ; Demeure, Roger ; Sibomana, Merence ; et. al. 31P NMR saturation transfer study of the creatine kinase reaction in human skeletal muscle at rest and during exercise. In: Magnetic Resonance in Medicine, Vol. 37, no. 5, p. 744-753 (1997)
Permanent URL http://hdl.handle.net/2078.1/24273