
Contents lists available at ScienceDirect

Journal of Hydrology

journal homepage: www.elsevier.com/locate/jhydrol

Research papers

Data fusion of citizen-generated smartphone discharge measurements in
Tunisia
Raed Fehria,⁎, Patrick Bogaerta, Slaheddine Khlifib, Marnik Vancloostera
aUniversité catholique de Louvain, Earth and Life Institute (ELI), Croix du Sud 2, 1348 Louvain-La-Neuve, Belgium
b Ecole Supérieure des Ingénieurs de Medjez el Bab (ESIM), UR-Gestion Durable des Ressources en Eau et en Sol, P5, 9070, Tunisia

A R T I C L E I N F O

This manuscript was handled by G. Syme,
Editor-in-Chief

Keywords:
Citizen science
Discharge measurement
Data fusion
Smartphone application
Medjerda river

A B S T R A C T

Water resources management techniques have been evolving over the years, introducing new ways of mon-
itoring and collecting data that improve both the quality and quantity of water-related information. Among
them, Citizen Science (CS) has been introduced in the field of environmental monitoring as a novel approach that
involves a direct collaboration between citizens, scientists and local authorities.

In Tunisia, the lack of reliable hydrological data about rivers’ discharge remains a major issue, despite the
recent governmental efforts to reinforce the existing official monitoring systems. In this study, we show how this
problem can be efficiently addressed using a CS methodology. Citizens at two locations in Tunisia (Slouguia and
Medjez-N5) have monitored discharge of the Medjerda river (the most important water resource in the country)
using a mobile phone application for a series of hydrological events. Using a Best Linear Unbiased Predictor
(BLUP) as a data fusion procedure for combining the various CS measurements, the results show that predicted
discharge at both locations is in very good agreement with the reference data collected for the same hydrological
events. Based on a variance decomposition, this approach allows us as well to properly assess the respective part
of the random errors that are related to the citizens and measuring devices.

It is concluded that CS-based discharge data collection is a promising cost-effective way for obtaining reliable
and numerous measurements. The monitoring approach based on the use of a mobile phone application is thus
quite valuable for complementing the existing Tunisian monitoring system, as well as for empowering local
communities. Furthermore, this approach can be applied at larger scales in the country by involving more
citizens and adding other sites, which should support the national efforts for better and smarter water resources
management.

1. Introduction

Efficient strategies of water resources management require the
availability of reliable hydrometric quantities such as rivers’ discharge
and rainfall. These data are needed to assess and model catchments’
hydrological behavior over time. Nevertheless, in many regions of the
world, the availability of water-related data (especially discharge) is
still a major concern, especially in Africa (Hannah et al., 2011). One of
the main reasons are the high acquisition and maintenance costs of the
traditional discharge measurement methods (which are relying on ad-
vanced sensors like pressure transducers); costly, dangerous, and time-
consuming site management (e.g., improvement of cross-sections); and
expert knowledge (Davids et al., 2019). Within the African regions,
Tunisia is no exception with respect to this issue (Sellami et al., 2013;
Fehri et al., 2019). Despite the recent governmental efforts to boost the

availability and accuracy of relevant hydrological data, several issues
persist. The access to data is still not publically available and is limited
to specific governmental institutions, which represents a major dis-
advantage for local groups and stakeholders. In addition, current offi-
cial discharge monitoring networks are not spatially dense and suffer
from data gaps, leading to scarce and incomplete time series and con-
sequently poor quality databases (Fehri et al., 2020).

By the light of these challenges and accounting for the growing
demand of water-related data, alternative cost-effective discharge
monitoring solutions have been developed thanks to the availability of
new smart sensing technologies, offering novel approaches that can be
used for improving the availability and reliability of hydrometric in-
formation (Paul et al., 2018). As an example, discharge estimation using
remote sensing techniques have been successfully used in several stu-
dies (Tarpanelli et al., 2011; Brakenridge et al., 2007; Van Dijk et al.,
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2016). However, applications of remote sensing-based technology in
the context of small streams remain problematic (Tauro et al., 2018)
and motivate the use of ground-based indirect discharge measurements.
In this context, image and video analysis techniques such as Particle
Tracking Velocimetry (PTV), Particle Image Velocimetry (PIV), Surface
Structure Imaging Velocimetry (SSIV), and Large-Scale Particle Image
Velocimetry (LSPIV) are being widely used for extracting water level
and surface flow velocity using simple and inexpensive equipment such
as fixed cameras and smartphones (Nezu and Sanjou, 2011; Lüthi et al.,
2018; Kantoush et al., 2011). Indeed, camera-based discharge mea-
surements become more available and can be used in floods assessment
and rating curve establishment (Dramais et al., 2011; Le Boursicaud
et al., 2016). In parallel, over the last decade, the involvement of citizen
scientists through Citizen Science (CS) initiatives has been emerging. It
can potentially help filling the existing hydrological data gap by gen-
erating additional hydrologic information, including discharge (Fujita
et al., 2013; Le Coz et al., 2016; See, 2019; Davids et al., 2019; Fehri
et al., 2020).

Dickinson et al. (2012) define CS as the engagement of non-pro-
fessionals in authentic scientific research, while Buytaert et al. (2014)
described it as the participation of the general public (i.e., non-scien-
tists) in the generation of new scientific knowledge. Fehri et al. (2020)
define CS as a complex process built on civic engagement into science,
environmental monitoring and capacity building. Nevertheless, the
definition of CS depends mainly on the specific goals of the project, i.e.
whether it aims at engaging volunteers for data collection (which is
known as crowdsourcing) or empowering and including citizens in
knowledge generation activities, training, and capacity building, which
is considered as a more advanced form of CS (Pocock et al., 2019). In
addition, Roy et al. (2012) provide a classification of CS based on the
context of the projects. Three main approaches are recognized: con-
tributory projects (entirely designed by scientists while citizens are
mainly participating in data collection), collaborative projects (also
designed by scientists while citizens are more involved in the scientific
process such as collecting and analyzing data), and co-created projects
(designed in collaboration between scientists and citizens as both work
together in partnership). Whatever the exact definition one is using,
participation and empowerment of the general public at any level
within a region or a country suggests that everyday citizens have the
potential to deliver timely and cost-effective alternatives to traditional
data collection (Walker et al., 2016). In this sense, CS is helpful for
improving integrated water resources management, thus contributing
to the implementation of the water-related Sustainable Development
Goal (SDG-6) (Fritz et al., 2019).

Despite the rapid expansion of CS and the activity of community-
based monitoring, considerable attention needs to be paid to the quality
of CS-based data, as they are collected by non-specialists using non-
reference methods. The quality of the citizen-collected data might vary
depending on the design of the CS project. For instance, projects that
engage volunteers to collect data regardless of the quality of the out-
comes are prone to high error rates associated with citizens’ measure-
ments. On the other hand, projects that include a training phase as well
as precise monitoring guidelines before the start of the data collection
should expect less errors, which helps the validation process of the data.
Yet, there is always a need for methods that aim at improving the final
quality of CS-collected data if the goal is to combine them at some point
with existing databases. Among these methods, data fusion techniques
are widely found in the literature. They are based on the idea that
combining at best information coming from different sources with
unusual formats, different resolutions, units, and locations contributes
to improve their final accuracy (see, e.g., Fasbender et al., 2009;
Bogaert and Fasbender, 2007).

In order to improve water monitoring networks in Tunisia and since
no existing CS initiatives were already reported to monitor water-re-
lated data in the country, the Together4Water project was started in
October 2018 in collaboration with local Tunisian institutes and schools

(see Together4Water homepage) in a test region “Medjez-El-Beb city”
(Fehri et al., 2020). The project aims at engaging the population in
environmental monitoring and knowledge generation to support the
existing water-related databases. This should also foster the local
communities’ awareness about their environment and empower them to
take actions and contribute to the sustainable management of water
resources. Consequently, one goal of the project is to involve citizens
from different generations in monitoring discharge of the Medjerda
river at two different locations (denoted Medjez-N5 and Slouguia) using
the publicly available smartphone application “Discharge app” that
estimates river discharge based on the processing of a five-seconds
video recording (Photrack, 2018a). The application was first success-
fully used by the “Global iMoMo Initiative” to monitor discharge of the
Themi River in Tanzania in collaboration with local stakeholders
(Photrack, 2018b). In our study case, more attention will be paid to the
validation of the citizen-based data as well as to the fusion of the var-
ious measurements.

In the first part of this paper, we will shortly describe the CS ap-
proach that is adopted to engage citizens in the region and the way they
were trained to properly use the smartphone application. We subse-
quently assess the quality of the CS-based discharge measurements by
comparing them to two official reference stations located at the same
places and maintained by the local water authority. In the second part
of the paper, a fusion of these citizens-based measurements is proposed
using a Best Linear Unbiased Predictor (BLUP) approach, that aims at
combining them for obtaining a single and improved estimation.
Results of this data fusion will be compared to the reference discharges
in order to assess the quality of the prediction. Two main objectives will
thus be achieved here, i.e. (i) to show that citizens-based discharge
measurement using a smartphone application can provide sound esti-
mation of the real discharge and (ii) to emphasize that data fusion is
relevant for combining these measurements, thus delivering higher
quality data at the end. As this quality is depending both on the mea-
surement errors caused by the citizens and by the smartphone appli-
cation, a special attention will be paid to the assessment of the re-
spective contribution of these two sources of errors.

2. Materials and methods

2.1. Study area

Known for its strategic location in North Tunisia, the test region
“Medjez-El-Beb city” is located in the center of the Medjerda basin (see
Fig. 1), about 60 km from Tunis (the capital of Tunisia) and 50 km from
Beja (the capital of the governorate). The study area is characterized by
a semi-arid climate with an average annual rainfall of 420 mm (DGRE,
2016). The Medjerda catchment is the most important freshwater re-
source in the country. It covers a total area of 23,700 km2 of which 33%
are located in Algeria. About 84% of the basin water resources are used
for agricultural purposes, while about 10% are used for services and
industries (Fehri et al., 2019). Similarly, the main economic activities of
the Medjez-El-Beb region are related to agriculture and agri-food in-
dustries that exert significant pressure on the available water resources.
The population within the city of Medjez-El-Beb has been growing
significantly over the last two decades, from 38,964 in 2004 to 41,749
in 2014 (INS, 2014). Multiple schools, institutes and NGO’s are located
in the city, which represents a suitable environment for citizen science
activities.

The city of Medjez El Beb provides easy access to the existing dis-
charge monitoring sites. The official discharge monitoring in the study
area consists of two hydrometric stations (namely Medjez-N5 and
Slouguia). The monitoring method includes automated stations based
on water level radar sensors for measuring open channel flow. These
stations send daily measurements to a centralized database. The hy-
drological regime at both sites is similar. The mean annual discharge is
around 15 m s/3 and 17 m s/3 for Medjez-N5 and Slouguia, respectively,
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while water level is typically ranging from 0.7 to 1.8 m for Medjez-N5
and from 0.8 to 2 m for Slouguia. The physical characteristics of both
sites are quite similar too, with cross-section lengths of 29 m and 30 m
at Medjez-N5 and Slouguia, respectively.

2.2. Citizens engagement methodology

Thanks to its high demography and diversified activities in both
rural and non-rural environments, the Medjez-El-Beb city fulfills ap-
propriate conditions for a successful CS program. In the framework of
the Together4Water project, the citizens involvement has been realised
using a step-by-step CS approach (Fehri et al., 2020) in order to ensure
consistent and reliable discharge data collection using the publicly
available smartphone application “Discharge app”. Citizens were first
reached in the region via the project website, that includes a detailed
presentation of the project’s goals and the available monitoring tools.
The website was advertised on the local social media and at the schools
and universities of the region, with the aim of reaching a wide and
diversified panel of people. A total of 20 candidate citizens from dif-
ferent educational backgrounds and generations were afterwards se-
lected to perform the discharge measurements based on their motiva-
tion, their location (close to the measurement sites), the fact that they
own a smartphone, and their access to an internet connection. The final
step of the engagement process consisted in providing them a complete
field training for proper use of the measurement tool as well as for
proper data transmission. The training program was organized in the
framework of group meetings with citizens at the monitoring sites.
Assistance was provided to explain the different steps of the measure-
ment such as locating the sites created on the app, choosing the right
standing position located on one of the riverbanks, and filming a 5-s
video with steady hands to avoid low quality videos. A specific atten-
tion was paid to the data transmission process, which can be made
immediately after the processing of the video. In addition, a list of

factors that can affect the quality of the measurement was delivered and
explained to citizens such as the presence of wind, light reflection on
the water surface, and the color of the water. The knowledge of the
impact of these factors is crucial to help citizens evaluate the quality of
the measurements on site and to make multiple measurements if
needed. The entire training program was video-recorded and docu-
mented in a public handbook distributed to citizens. This preparation
and training step was crucial in order to ensure consistent data col-
lection and to reduce knowledge-related issues at the start of the
measurement campaign. In this study, we present the outcomes of eight
citizens (four citizens per measuring site) who collected the most data
from the start of the monitoring campaign.

2.3. Mobile phone discharge application

In this study, a publicly available smartphone application named
“Discharge app” was used. The application was developed by Photrack
(2018a) as a cost-effective measurement tool. The Discharge app
(available for Android devices) uses the smartphone’s built-in camera
and accelerometer to optically measure open channels’ water level and
surface velocity and therefore to derive an estimation of the discharge
(Carrel et al., 2019; Lüthi et al., 2014). The approach is based on the
Surface Structure Imaging Velocimetry (SSIV) technique, which is a
correlation-based technique typically applied to large channels or
rivers, similar to Large Scale Particle Imaging Velocimetry (LSPIV)
approach (Kantoush et al., 2011; Fujita et al., 1998).

For a proper use of the mobile phone app, a technical field pre-
paration and setup was first needed, as described in the Discharge app
developers’ instructions guide (Carrel et al., 2019). Four markers were
positioned on both riverbanks (Fig. 2 and a geometrical survey was
performed at both sites in order to gather information about the exact
position of the markers, the cross-section of the river, and the shoreline.
For this last task, a Disto S910 telemeter (LeicaTM) was used. The cross-

Fig. 1. Location of Medjez-N5 and Slouguia study sites.
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sections obtained at both sites were encoded into the Discharge app,
along with the Manning–Strickler coefficient. The video resolution of
the mobile phone was set at its highest value in order to maximize the
accuracy of the results. As an illustration, Fig. 3 presents a screenshot of
the application with the window where this information was encoded.
The main steps of Discharge estimation can be described as follows: (i)
the selection of the implemented site (Fig. 3); (ii) a five-seconds video
of the river flow is to be recorded. Instructions for the recording are
user-specific and related to the user’s standing position and the selec-
tion of the water column; (iii) after locating the four markers on both
riverbanks, the intersection between the water surface and the shore-
line is manually defined to characterize the actual water level (the blue

line in Fig. 2b and d); (iv) finally, the recorded video is processed lo-
cally on the smartphone using the SSIV algorithm. The estimated dis-
charge as well as the surface velocity are then displayed (Fig. 2). The
theoretical aspects of the Discharge app are detailed and described by
Carrel et al. (2019), Lüthi et al. (2014) and Leitão et al. (2018).

Using this mobile phone app, the data collection campaign started
in October 2018 at both sites, where citizens were in charge of mea-
suring the river discharge for a same series of hydrological events.
Measurements were uploaded via the app itself to a cloud-based online
platform where all measurements can be accessed for all citizens in a
structured database, including the date and hour of the measurement
along with the name of the volunteer. A total of 100 events were

Fig. 2. Picture of the reference sites with corresponding screenshots of the smartphone application for two events. Parts (a) and (b) refer to the Medjez-N5 site, while
Parts (c) and (d) refer to the Slouguia site.
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monitored by eight citizens (four citizens per site), but only a part of
them was considered in this study, covering the period from October
2018 to October 2019.

2.4. Data fusion and prediction of discharge

Let us consider a given hydrological event for which the true

discharge is denoted by z, while the various discharge measurements as
collected from n distinct users at the same location are given by

…Y Y, , n1 . Let us consider that we can assume that =E Y z z[ ]i , i.e. on the
average these users measurements correspond to the true discharge z.
Stated in other words, the regression E Y z[ ] is the 1:1 line and users are
all providing distinct but unbiased measurements of the true discharge
z. Generalizing this for any event such that Z is a random variable too,
we can thus consider the random model

= + = … = +Y Z i n ZY 11, ,i i (1)

(with 1 the unit column vector of size n) where Z is the single true but
unknown discharge and where = …Y YY ( , , )n1 are the various corre-
sponding users measurements. From the fact that =E Y z z[ ]i , the errors

= …( , , )n1 are such that =E 0[ ] (with 0 the null column vector of
size n), with a covariance matrix . We will additionally consider that
Z , i.e. the measurement errors are uncorrelated with the discharge
Z.

In a data fusion framework, let us consider that what is sought for is
a way to combine the variousYi ’s in order to obtain a single predictor Zp

of the unknown discharge Z. One can rely on the Best Linear Unbiased
Predictor (BLUP) of Z, i.e. the best linear combination

= =Z Y Yp
i i i such that the prediction variance Var Z Y[ ] is

minimum subject to the unbiasedness constraint =E Z Y[ ] 0, where
= …( , , )n1 is a vector of weights that need to be estimated. This can

be done using the Lagrangian formalism, where the objective function

= +L Var Z E ZY Y( , ) [ ] 2 [ ] (2)

needs to be minimized with respect to the weights and to the
Lagrangian multiplier . Eq. (2) can however be strongly simplified.
Using Eq. (1), the unbiasedness constraint can be rewritten as

=
= =

=

E Z E Z E Z E
E Z

Y 1
1

[ ] [ ] [ ] [ ]
[ ](1 ) 0

0

so that the unbiasedness condition to be fulfilled is =1 1, i.e. the
weights must sum up to one. Using again Eq. (1), the predictor variance
can now be rewritten as

=

= =

=

Var Z Var Z

Var

Y 1[ ] (1 )

[ ]

0

(3)

Plugging these two results in Eq. (2) now gives the classical problem
of minimizing

= +L 1( , ) 2 (1 )

where is a quadratic form, so that the minimum is unique and is
reached when

=

=
+ =

=
= ( )0 1 0

1
1

1
0

0
2 2
1 0 0 1

L

L

( , )

( , )

Solving this linear system of equations leads to the solution

=
1 1

11
1

1

(4)

(where 1 11 is a scalar), with an associated prediction variance as
given by Eq. (3) and thus equal to

=Var Z Y
1 1

1
1 (5)

Eqs. (4) and (5) thus provide a way to fuse the various discharge
measurements Y in order to predict at best the unknown discharge Z, by
providing a set of weights and an associated prediction variance
Var Z Y[ ] which is measuring the performance of this predictor Zp.

Fig. 3. Screenshot of the mobile phone app with the encoded parameters at the
Medjez-N5 site.
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2.5. Sources of errors

In the previous section, we focused on the BLUP without any spe-
cific hypothesis on the covariance matrix , so that these results hold
true in general. We will now focus on the structure of by considering
mixed sources of errors of various origins. The first possible origin is a
random error m linked to the event, that is assumed to be random (i.e.,
this error will vary from one event to another one) but that affects
identically all users for the same event. For our case study, this error
could be linked to the smartphone application that underestimate or
overestimate in a similar way for all users the discharge value of a given
event, while this error differs between events. A second possible origin
is a random error u i, linked to the user itself, that can be assumed as
independent between users and independent from m, with a variance
that only depends on the user.

These sources of errors (the smartphone application and the users)
were considered based on the fact that they can easily be interpreted,
which led to this simple and classical decomposition of errors. On the
other hand, a possible site effect could also be considered, but due to
the fact that only two sites were at hand, no clear conclusions could be
drawn, and it would be impossible to reliably estimate this kind of ef-
fect in the context of a random factors model. Furthermore, it is quite
possible (and even likely) that pure random errors exist, but they could
not be assessed from the data at hand. Indeed, this would require re-
peated measurements for the same citizen and the same event. If such
pure random errors exist in our data, they are thus included into the
user’s variance in our model. It is worth mentioning that crossed effect
between the user and the event might be possible and is not theoreti-
cally impossible, although, it would be unlikely at the same time, at
least if the measurement conditions of the same event are comparable
for all users. In such conditions, it is hard to imagine how there could be
an interaction between the event and the user. Nevertheless, it remains
true that our model could possibly include pure random errors and/or
interaction effects, as long as these effects can be assessed from the data
at hand and that there is some evidence to consider them in the model.
It is unfortunately not the case for our data.

Stated in other words, considering that =E [ ] 0m and =E [ ] 0u i,
and assuming first that all users have a similar variance of errors, we
now have

= +1m u

where m is a scalar and = …( , , )u u i u n, , , so that

= +11 Im u
2 2 (6)

(with I the identity matrix), where m
2 and u

2 are the measuring device’s
and user’s variance, respectively. The corresponding correlation matrix
is given by

=R D D1/2 1/2

where = diagD ( ). Using Eq. (6), this gives = +D I( )m u
2 2 and so

the i j( , ) element of R is then given by

=
+

r i jij
m

m u
,

2

2 2 (7)

where rij, (also known as the intraclass correlation coefficient in the
random model terminology) is the correlation between the measure-
ments of the ith and jth users when they are measuring the discharge for
the same event. As seen from Eq. (7) and under the condition of Eq. (6),
this correlation coefficient corresponds to the part of the variance that
comes from the measuring device, where +m u

2 2 is the total variance.
Under the condition of Eq. (6) again, it can also be proved that all
weights must then be equal to n1/ , so that = n 1(1/ ) , and an explicit
formulation for the prediction variance Var Z Y[ ] as a function of
n, m

2 and u
2 can also be obtained (see Appendix). In general, depending

on training and experience, it could however be expected that the same
variance u

2 does not necessarily hold for all users, so that Eq. (6) is

more generally written as

= +11 Dm u
2 (8)

where Du is a diagonal matrix having u i,
2 as ith element (i.e., the var-

iance for the ith user) and where the weights are then no more
identical in that case.

As the predictor =Z Yp is a linear combination of users mea-
surements Y , the prediction error Z Y will tend to be Gaussian
distributed as long as the correlation between these measurements (as
measured by Eq. (7)) is not too high. It is then possible to provide a
simple prediction interval to the discharge Z. Assuming that

Z N µY~ ( , )p p
2

with = =µ E Z Y[ ] 0p from the unbiasedness condition and with
= Var Z Y[ ]p

2 as computed from Eq. (5), two-sided prediction in-
terval at the 1 confidence level is then

z Z zY

p
1 /2 2 1 /2

or equivalently

+z Z zY Yp p1 /2
2

1 /2
2

(9)

where z1 /2 is the 1 /2 quantile of the zero-mean unit variance
Gaussian distribution. This confidence interval will narrow when n is
increased, but it is incorrect to state that =lim 0n p

2 in general, ex-
cept when = 0m

2 . Stated in other words, increasing the number n of
users measurements will help to reduce the uncertainty about Z, but
there is a lower bound equal to m

2 for the prediction variance, that
relates to the errors m which cannot be reduced by increasing n. The
proper estimation of m

2 and u
2 is thus important, as these variances are

conditioning the sampling strategy, i.e. by assessing the benefit of in-
cluding more users in the process or the benefit of improving the
measuring device for reducing m

2 . In practice, the estimation of m
2 and

u
2 can be done from a set of observed hydrological events and user
measurements using any standard statistical computer package. Indeed,
Eq. (1) corresponds to a one-way ANOVA model with random effect, so
that a Restricted Maximum Likelihood (REML) procedure can be used
for estimating at best these variance components. See, e.g., Galecki and
Burzykowski (2013) and Fox (2008) for a presentation of the details
related to random models and the corresponding estimation proce-
dures.

3. Results and discussion

A careful quality assessment of the CS-based discharge measure-
ments is crucial, both for evaluating the performance of the smartphone
application and for assessing the consistency of these measurements
over time. With these goals in mind, extreme discharge events (that
represent four events out of the total) were excluded from our analysis
at both sites, since measurements were inaccurate due to the difficulty
of locating the markers on both sides of the river, as caused by the high
water level during these events. Therefore, only discharge measure-
ments corresponding to values lower than m s35 /3 were considered in
this analysis. This represents 90% of the collected data. More precisely,
90 events were considered in this study, where each event was mon-
itored by the same four citizens at each study site.

3.1. Data quality assessment

Fig. 4 compares at the Medjez-N5 site the discharge measurements
obtained from the reference station to those obtained from the four
citizens using the application. In order to check for the possible pre-
sence of bias during the measurements, a regression line

= +E Y z z[ ]i i i0, 1, was fitted for all citizens, leading to slope
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estimates i1, that range from 0.992 to 0.996. However, separate F-test
based on the null hypothesis = =H : 0, 1i i0 0, 1, lead to the conclusion
that these regression lines do not significantly differ from the 1:1 line
( >p 0.05v for all citizens) and therefore citizens-based discharge mea-
surements can be considered as statistically unbiased estimates of the
true discharge (as evaluated from the reference station).

Although, small biases are always possible, but it appears to us that
they could be neglected in our study. For practical applications, it seems
to us that what is relevant here is the effect of possible biases by
comparison with other random effects. For our data, it is clear that
biases can be neglected, as long as we refer to the official gauging
stations as our reference data. If the conclusion of the test would have
been that biases exist, they must ideally be accounted for in the model,
as long as their impact is not minimal for the final results. If these biases
are coming from the users, this would lead to considering that mea-
surements from each user should be corrected for each user’s bias prior
to the data fusion. If these biases come from systematic errors, they
would be however much more complicated to assess, as doing so would
require other reference data (ideally the real discharge values) for
comparison purposes. It is still possible to conduct a sensitivity analysis
in order to assess the impact that a misspecification (e.g., in the con-
version of surface velocities to depth-average velocities) might have,
but still this would not allow us to assess the real impact of these
misspecifications without additional reference data or alternate mea-
surement methodologies, again for comparison purposes.

Besides the absence of bias, the R2 values are ranging from 0.984 to
0.990 and thus indicate a good agreement between citizen-based and
reference-based measurements. Similar observations and conclusions
can be made for all citizens at the Slouguia site (not shown here). One
can also see that the pattern of deviations from the 1:1 line is com-
parable between citizens, thus suggesting that the training provided at
the start of the campaign was beneficial, as these citizens were from
different generations and educational backgrounds.

3.2. Distribution of the errors

Focusing on the measurements errors for each citizen, it is possible
to test the equality of variance between citizens, as well as to test the
hypothesis that these errors are Gaussian distributed for each citizen.
It’s worth noting that the official discharge measurements are prone to
errors. However, the data provider does not communicate the in-
formation about these errors. Accordingly, the additional variance that
might be induced by such errors is not accounted for here. Variance
equality was tested using the Levene’s test (Levene, 1960; Iachine et al.,
2010), that leads to the conclusion they can be assumed as equal be-
tween citizens for both sites (with =p 0.157v and 0.319 at the Medjez-
N5 and Slouguia sites, respectively). Normality was tested separately
for each citizen using the Shapiro–Wilk test (Shapiro and Wilk, 1965)
and leads to the conclusion that measurement errors can be assumed as
normally distributed for all citizens at both sites too (with >p 0.05v for

Fig. 4. Citizen-based versus reference-based discharge measurements at the Medjez-N5 site, along with the 1:1 line (black plain line), the estimated regression line
(red plain line), and the corresponding 95% prediction interval (dashed lines). (For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)
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all citizens; see Table 1).
Errors can be expected as being proportional to discharge in gen-

eral, and this was partly observed on the raw data, that included 10% of
discharge values that were above 35 m s/3 . From the examination of
measurements above that threshold (not shown in the paper), they were
considered as quite unreliable and they are also associated with ex-
treme events, for which the measurement app is not expected to deliver
sound results. These values were thus discarded. For the 90% of values
below that threshold, no proportional effect can be observed, as illu-
strated in Fig. 4. Hence, the assumption of a constant variance of errors
for citizen-based discharge below the 35 m s/3 threshold seems valid.
Although Fig. 4 might show slightly wider and narrower uncertainty
interval between users (especially for citizen 1 and 3), the Levene sta-
tistical test confirms that all variances can indeed be considered as
identical. Though the bivariate scatterplots might appear as different,
testing the equality of variance only relies on the data used to build the
histograms that appear on the diagonal in Fig. 5 (that are not so

different). It is worth noting too that the number of measurements is
limited, so (i) the statistical power of the Levene test (i.e. its ability to
detect a difference between variances when it exists) is not very high,
and (ii) few values might appear as more isolated on the histograms,
thus giving the impression that the distributions are different as well.

3.3. Variance decomposition

In order to assess the amount of intraclass correlation as defined by
Eq. (7), one can estimate the Pearson correlation coefficient rij between
CS-based discharge that are measured for the same set of events, as
presented in Fig. 5 for the Medjez-N5 site. All correlations are statisti-
cally significant ( >p 0.05v ) and range from 0.33 to 0.48, except be-
tween citizens 3 and 4 at the Medjez-N5 site. Comparable results (not
shown here) are obtained at the Slouguia site.

The fact that these correlations are significant and comparable be-
tween citizens is in agreement with the hypothesis that the total

Table 1
Sample statistics and p-values (pv) of the Shapiro–Wilk’s test for citizens-based (Ci) discharges at both sites, where left and right parts of the table refer to the Medjez-
N5 and Slouguia site, respectively. Values y y y, ,n(1) ( ) and are the minimum, maximum, mean and standard deviation, respectively.

C1 C2 C3 C4 C1 C2 C3 C4

y(1) −1.908 −1.580 −1.800 −1.770 −1.097 −1.699 −1.699 −1.398
y n( ) 2.239 2.330 1.930 1.190 1.303 1.919 1.944 1.908

y −0.163 0.063 0.144 −0.102 −0.083 −0.184 −0.086 −0.178
0.945 0.793 0.695 0.640 0.670 0.854 0.847 0.697

W 0.970 0.941 0.963 0.974 0.922 0.985 0.952 0.957
pv 0.273 0.219 0.141 0.371 0.145 0.959 0.245 0.308

Fig. 5. Histograms (on diagonal) and scatterplots (off diagonal) of the discharge residuals for the 4 citizens at the Medjez-N5 site, with corresponding correlation
coefficients between citizens’ discharge measurements for the same events.
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variance of errors can indeed be decomposed in two parts, as suggested
in Section 2.5, where m

2 is the part of the variance linked to the
smartphone application while u i,

2 is the part linked to each citizen. As
the hypothesis of variance equality between citizens has already been
accepted in Section 3.2, we can consider that =u i u,

2 2 for all citizens, so
that a single u

2 value need to be estimated for each site.
Being able to assess the respective amount of each source of errors is

important in our context, as it eases the identification of the part of the
measurement chain that need to be improved in priority. It also allows
us to assess the expected benefit of increasing the number of citizens
measuring the same event in order to reduce the error, knowing that m

2

is a lower bound for the total variance, as previously explained. Based
on a one-way ANOVA model with random effect and using a REML
procedure, the corresponding results are given in Table 2. It can be seen
that the estimated part of the variance m

2 related to the smartphone
application is equal to 37% and 39% of the total variance at the Medjez-
N5 and Slouguia sites, respectively, so that the variance u

2 attributed to
the citizens account for more than 60 % of the total at both sites.

As stated before, m represents the random error related to the
event, which varies between events but which identically affects all
citizens for the same event. In our study, the main reason for this effect
is attributed to the smartphone application. Its importance can be re-
duced by improving the sites setup by using a better geometrical survey
of the cross-section, with more visible markers at both river banks
(especially for high discharge events). In parallel, a better estimation of
the Manning–Strickler coefficient that was empirically selected and
encoded in the application, is expected to reduce this random error and
lead to an improved discharge estimation. On the other hand, the u i,
error is related to the user itself and depends on various factors such as
the citizen’s position on the riverbank while recording the video se-
quence, the absence of hand movement during the recording, and the
quality of the camera of the citizen’s mobile phone (mainly in terms of
video resolution). With respect to the reference data, it is worth men-
tioning that the official measurements at both sites are also affected by
errors. However, the quantitative information about these errors is not
available and is limited to specific governmental institutions.

3.4. Data fusion

Following the reasoning in Sections 2.4 and 2.5, one can use Eqs. (4)
and (5) for fusing the various CS-based discharge measurements of the
same event and for providing a two-sided prediction interval for the
true discharge using Eq. (9). Corresponding results are shown in Fig. 6
for both sites. For the sake of comparison with the initial results ob-
tained separately for each citizen, Table 3 provides the estimated var-
iances of the errors around the 1:1 line, along with the corresponding R2

values.
One can see from the reduced S2 and increased R2 values that fusing

CS-based discharge measurements leads to improved results, with a
good agreement between the fused predicted discharges and the re-
ference discharge at both sites. The 95% prediction intervals that are
obtained under a Gaussian distribution hypothesis are thus reduced and
remain in good agreement with the fused data as well. Though the
benefit of the fusion procedure might appear as modest here, it should
also be reminded that (i) m

2 (the part of the variance that cannot be

reduced by fusing measurements) represents here about 40% of the
total variance at both sites, and (ii) the fusion only involved eight

Table 2
REML estimates of m

2 and u
2 at the Medjez-N5 and Slouguia sites, along with

their respective contribution (in %) to the total variance +m u
2 2.

Medjez-N5 Slouguia

m
2 0.259 (36.8%) 0.398 (38.7%)

u
2 0.444 (63.2%) 0.630 (61.3%)

total 0.703 (100%) 1.028 (100%)

Fig. 6. Predicted (fused) citizens-based discharges versus reference discharges,
along with the corresponding prediction intervals (dashed lines) around the 1:1
line (plain line). Part (a) refers to the Medjez-N5 site, while Part (b) refers to the
Slouguia site.

Table 3
Estimated variances Si

2 of the four citizens-based (Ci) discharge errors around
the 1:1 line and the corresponding Ri

2 values, along with the results for the
fused measurements (last line). Left and right parts of the table refer to the
Medjez-N5 and Slouguia site, respectively.

Ci Si
2 Ri

2 Si
2 Ri

2

1 0.8737 0.9838 1.1557 0.9854
2 0.6157 0.9883 2.1590 0.9720
3 0.4722 0.9897 1.2191 0.9859
4 0.4002 0.9894 0.9815 0.9875

fused 0.2682 0.9970 0.4141 0.9960
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citizens’ measurements in our study. As a result, the fusion procedure
leads here to a moderate reduction of the total variance, but this var-
iance reduction can however greatly vary in general, depending on the
study site and the number of involved citizens.

4. Conclusions

In the framework of the Together4Water project, discharge data
were collected for a series of 90 hydrological events by a group of 8
citizens (4 citizens per site) using a publicly available smartphone ap-
plication. In this paper, a Best Linear Unbiased Predictor (BLUP)
method was used as a data fusion procedure in order to combine var-
ious CS-based discharge measurements at two locations along the
Medjerda river, our test river in Tunisia. The major conclusions are as
follows:

(1) The step-by-step CS approach used in this study was successful, as
we were able to engage and motivate a group of citizens from dif-
ferent generations and educational backgrounds. The training pro-
gram was crucial to streamline the data collection process before
the start of the monitoring campaign, which helped to guarantee a
consistent measurement of the discharge as well as appropriate data
transmission.

(2) For low to moderate discharge values (< m s35 /3 ), the use of the
mobile phone application provides promising results at both sites
and for all users. The good quality (absence of bias and high cor-
relation with true discharges) of these results was confirmed from
the various analyses. For extreme discharge events (> m s35 /3 ), ci-
tizens were however unable to provide reliable measurements
(difficulty to access the sites, to locate the markers on both sides of
the river, etc.) and more work still needs to be done for handling
these situations.

(3) A random model and a REML procedure were successfully used to
model and to estimate the respective contribution of two sources of
errors. For our study sites, these results have shown that the errors
linked to the event/measuring device ( m) and to the users ( u) re-
present about 40% and 60% of the total variance, respectively.
Reducing m would require improving the mobile phone application

and measuring conditions (more precise geometrical survey, better
positioning of the markers, better estimation of the
Manning–Strickler coefficient). Reducing the final impact of u was
however successfully done by simply fusing the various citizens’
discharge measurements.

(4) Although no firm conclusions can be obtained so far for other sites
that might present other challenges for collecting and fusing CS-
based discharge measurements, this study still shows that the use of
a low-cost measuring device (the smartphone application) by non-
specialist volunteers (our trained citizens) is able to provide reliable
results for discharge measurements and is thus a very promising
approach for improving water discharge monitoring in countries
that have limited monitoring networks.
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Appendix A

If we assume that is given by Eq. (6), it is possible to provide an explicit expression for 1 based on Miller (1981). In general, if A is a positive
definite matrix and B is a matrix of rank 1, then

+ =
+ g

A B A A BA( ) 1
1

1 1 1 1
(A.1)

where =g trace A B( )1 . By identifying =A Iu
2 and =B 11m

2 so that = +A B( )1 1 and knowing that =A I(1/ )u
1 2 , this gives after elementary

manipulations

=
+

=
+

=g n
g n

A BA 11; 1
1

;m

u

u

u m

m

u

2

2

2

2 2
1 1

2

4 (A.2)

and so we obtain

=
+ n

I 111
u

m

u m

1
2

2

2 2 (A.3)

which does not require the computation of any inverse matrix. Plugging this result in Eq. (4) now gives

=
+
n

n
1 11 1

u

m

u m

1
2

2

2 2 (A.4)

where all factors in front of 1 are scalars, thus showing that all weights are the same and must be equal to n1/ , as these weights sum up to one.
Plugging this result in Eq. (5) finally gives
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