# Compact formulations as unions of polyhedra

## Primary tabs

Bibliographic reference | Conforti, Michele ; Wolsey, Laurence. Compact formulations as unions of polyhedra. In: Mathematical Programming, Vol. 114, no. 2, p. 277-289 (Août 2008) |
---|---|

Permanent URL | http://hdl.handle.net/2078.1/23542 |

## References Provided by I4OC

- Agra, A., Constantino, M.F.: Polyhedral description of the integer single node flow set with constant bounds. Technical report, DEIO University of Lisbon (2004)
- Atamtürk A. (2006). Strong formulations of robust mixed 0-1 programming. Math. Program. B 108: 235–250
- Atamtürk A. and Rajan D. (2002). On splittable and unsplittable flow capacitated network design arc–set polyhedra. Math. Program. 92: 315–333
- Balas E. (1998). Disjunctive programming: properties of the convex hull of feasible points, invited paper with foreword by G. Cornuéjols and W.R. Pulleyblank. Discret. Appl. Math. 89: 1–44
- Conforti, M., di Summa, M., Wolsey, L.A.: The mixing set with flows CORE DP 2005/92, Université catholique de Louvain, Louvain-la-Neuve, Belgium (2005)
- Conforti, M., di Summa, M., Wolsey, L.A.: The continuous mixing polyhedron with flows. Technical report, University of Padua, Italy (2006)
- Constantino, M., Miller, A., Van Vyve, M.: Lot-sizing with lower bounds. Technical report, University of Lisbon (in preparation, 2006)
- Cornuéjols, G.: Valid inequalities for mixed integer linear programs. Math. Program. B (2007) doi:10.1007/s10107-006-0086-0
- Eppen G.D. and Martin R.K. (1987). Solving multi-item lot-sizing problems using variable definition. Oper. Res. 35: 832–848
- Hoffman A.J. and Kruskal J.B. (1956). Integral boundary points of convex polyhedra. In: Kuhn, H.W. and Tucker, A.W. (eds) Linear inequalities and related systems., pp 223–246. Princteon University Press, Princteon
- Miller A and Wolsey L.A. (2003). Tight formulations for some simple MIPs and convex objective IPs. Math. Program. B 98: 73–88
- Miller A. and Wolsey L.A. (2003). Tight MIP formulations for multi-item discrete lot-sizing problems. Oper. Res. 51: 557–565
- Padberg M.W., Van Roy T.J. and Wolsey L.A. (1985). Valid inequalities for fixed charge problems. Math. Program. 33: 842–861
- Pochet Y. and Weismantel R. (1998). The sequential knapsack polytope. SIAM J. Optim. 8: 248–264
- Pochet Y. and Wolsey L.A. (1994). Polyhedra for lot-sizing with Wagner-Whitin costs. Math. Program. 67: 297–324
- Pochet Y. and Wolsey L.A. (1995). Integer knapsacks and flow covers with divisible coefficients: Polyhedra, optimization and separation. Discret. Appl. Math. 59: 57–74
- Pochet Y. and Wolsey L.A. (2006). Production Planning by Mixed Integer Programming. Springer, Heidelberg
- Schrijver A. (1986). Theory of linear and integer programming. Wiley, New York
- Van Vyve, M.: A solution approach of production planning problems based on compact formulations for single-item lot-sizing models. PhD thesis, Université Catholique de Louvain, (2003)
- Van Vyve M. (2005). The continuous mixing polyhedron. Math. Oper. Res. 30: 441–452
- Van Vyve M. and Wolsey L.A. (2006). Approximate extended formulations. Math. Program. B 105: 501–522