User menu

Compact formulations as unions of polyhedra

Bibliographic reference Conforti, Michele ; Wolsey, Laurence. Compact formulations as unions of polyhedra. In: Mathematical Programming, Vol. 114, no. 2, p. 277-289 (Août 2008)
Permanent URL http://hdl.handle.net/2078.1/23542
  1. Agra, A., Constantino, M.F.: Polyhedral description of the integer single node flow set with constant bounds. Technical report, DEIO University of Lisbon (2004)
  2. Atamtürk A. (2006). Strong formulations of robust mixed 0-1 programming. Math. Program. B 108: 235–250
  3. Atamtürk A. and Rajan D. (2002). On splittable and unsplittable flow capacitated network design arc–set polyhedra. Math. Program. 92: 315–333
  4. Balas E. (1998). Disjunctive programming: properties of the convex hull of feasible points, invited paper with foreword by G. Cornuéjols and W.R. Pulleyblank. Discret. Appl. Math. 89: 1–44
  5. Conforti, M., di Summa, M., Wolsey, L.A.: The mixing set with flows CORE DP 2005/92, Université catholique de Louvain, Louvain-la-Neuve, Belgium (2005)
  6. Conforti, M., di Summa, M., Wolsey, L.A.: The continuous mixing polyhedron with flows. Technical report, University of Padua, Italy (2006)
  7. Constantino, M., Miller, A., Van Vyve, M.: Lot-sizing with lower bounds. Technical report, University of Lisbon (in preparation, 2006)
  8. Cornuéjols, G.: Valid inequalities for mixed integer linear programs. Math. Program. B (2007) doi:10.1007/s10107-006-0086-0
  9. Eppen G.D. and Martin R.K. (1987). Solving multi-item lot-sizing problems using variable definition. Oper. Res. 35: 832–848
  10. Hoffman A.J. and Kruskal J.B. (1956). Integral boundary points of convex polyhedra. In: Kuhn, H.W. and Tucker, A.W. (eds) Linear inequalities and related systems., pp 223–246. Princteon University Press, Princteon
  11. Miller A and Wolsey L.A. (2003). Tight formulations for some simple MIPs and convex objective IPs. Math. Program. B 98: 73–88
  12. Miller A. and Wolsey L.A. (2003). Tight MIP formulations for multi-item discrete lot-sizing problems. Oper. Res. 51: 557–565
  13. Padberg M.W., Van Roy T.J. and Wolsey L.A. (1985). Valid inequalities for fixed charge problems. Math. Program. 33: 842–861
  14. Pochet Y. and Weismantel R. (1998). The sequential knapsack polytope. SIAM J. Optim. 8: 248–264
  15. Pochet Y. and Wolsey L.A. (1994). Polyhedra for lot-sizing with Wagner-Whitin costs. Math. Program. 67: 297–324
  16. Pochet Y. and Wolsey L.A. (1995). Integer knapsacks and flow covers with divisible coefficients: Polyhedra, optimization and separation. Discret. Appl. Math. 59: 57–74
  17. Pochet Y. and Wolsey L.A. (2006). Production Planning by Mixed Integer Programming. Springer, Heidelberg
  18. Schrijver A. (1986). Theory of linear and integer programming. Wiley, New York
  19. Van Vyve, M.: A solution approach of production planning problems based on compact formulations for single-item lot-sizing models. PhD thesis, Université Catholique de Louvain, (2003)
  20. Van Vyve M. (2005). The continuous mixing polyhedron. Math. Oper. Res. 30: 441–452
  21. Van Vyve M. and Wolsey L.A. (2006). Approximate extended formulations. Math. Program. B 105: 501–522