User menu

Accès à distance ? S'identifier sur le proxy UCLouvain

Conic formulation for lp-norm optimization

  1. Peterson, E.L., and Ecker, J.G., Geometric Programming:Duality in Quadratic Programming and l p -Approximation, I, Proceedings of the International Symposium on Mathematical Programming, Edited by H. W. Kuhn and A. W. Tucker, Princeton University Press, Princeton, New Jersey, pp. 445-480, 1970.
  2. Peterson, E.L., and Ecker, J.G., Geometric Programming: Duality in Quadratic Programming and l p -Approximation, II, SIAM Journal on Applied Mathematics, Vol. 13, pp. 317-340, 1967.
  3. Peterson Elmor L., Ecker Joseph G., Geometric programming: Duality in quadratic programming and lp-approximation III (degenerate programs), 10.1016/0022-247x(70)90085-5
  4. Terlaky T., On ℓp programming, 10.1016/0377-2217(85)90116-x
  5. Nesterov, Y.E., and Nemirovski, A.S., Interior-Point Polynomial Methods in Convex Programming, SIAM Studies in Applied Mathematics, SIAM Publications, Philadelphia, Pennsylvania, 1994.
  6. Glineur, F., Topics in Convex Optimization: Interior-Point Methods, Conic Duality, and Approximations, PhD Thesis, Faculté Polytechnique de Mons, Mons, Belgium, 2001.
  7. Stoer Josef, Witzgall Christoph, Convexity and Optimization in Finite Dimensions I, ISBN:9783642462184, 10.1007/978-3-642-46216-0
  8. Sturm, J.F., Primal-Dual Interior-Point Approach to Semidefinite Programming, PhD Thesis, Erasmus University Rotterdam, Rotterdam, Netherlands, 1997.
  9. Rockafellar Ralph Tyrell, Convex Analysis : , ISBN:9781400873173, 10.1515/9781400873173
  10. Lobo Miguel Sousa, Vandenberghe Lieven, Boyd Stephen, Lebret Hervé, Applications of second-order cone programming, 10.1016/s0024-3795(98)10032-0
  11. Goldman, A.J., and Tucker, A.W., Theory of Linear Programming, Linear Equalities and Related Systems, Edited by H.W. Kuhn and A.W. Tucker, Annals of Mathematical Studies, Princeton University Press, Princeton, New Jersey, Vol. 38, pp. 53-97, 1956.
  12. Xue Guoliang, Ye Yinyu, An Efficient Algorithm for Minimizing a Sum of p-Norms, 10.1137/s1052623497327088
  13. Roos, C., den hertog, D., Jarre, F., and Terlaky, T., A Sufficient Condition for Self-Concordance, with Application to Some Classes of Structured Convex Programming Problems, Mathematical Programming, Vol. 69, pp. 75-88, 1995.
  14. Glineur François, 10.1023/a:1013357600036
  15. Glineur, F., An Extended Conic Formulation for Geometric Optimization, Foundations of Computing and Decision Sciences, Vol. 25, pp. 161-174, 2000.
Bibliographic reference Glineur, François ; Terlaky, Tamas. Conic formulation for lp-norm optimization. In: Journal of Optimization Theory and Applications, Vol. 122, no. 2, p. 285-307 (Août 2004)
Permanent URL