User menu

Lexicographic differentiation of nonsmooth functions

Bibliographic reference Nesterov, Yurii. Lexicographic differentiation of nonsmooth functions. In: Mathematical Programming, serie B, Vol. 104, no. 2-3, p. 669-700 (Novembre 2005)
Permanent URL
  1. Clarke, F.: Optimization and nonsmooth analysis. Wiley, New York, 1983
  2. Demjanov, V., Rubinov V.: On quasi-differentiable functionals. DAN SSSR 250(1), 21 – 25 (1980), (in Russian)
  3. Ioffe, A., Tikhomirov, V.: Theory of Extremal Problems. North Holland, Amsterdam, 1979
  4. Mordukhovich, B.: Maximum principle in problems of time optimal control with nonsmooth constraints. J. Appl. Math. Mech. 40, 960–969 (1976)
  5. Mordukhovich, B.: Complete characterizations of covering, metric regularity, and Lipschitzian properties of multifunctions. Trans. Am. Math. Soc. 340, 1 – 35 (1993)
  6. Mordukhovich, B.: Variational analysis and generalized differentiation. Vol.I: Basic Theory, Vol.II: Applications. To appear in Springer
  7. Mordukhovich, B., Shao, Y.: Nonsmooth sequential analysis in Asplund spaces. Trans. Am. Math. Soc. 348, 1235–1280 (1996)
  8. Moreau, J.J.: Fonctionelles Convexes. Collége de France, Paris, 1966
  9. Nemirovsky, A., Yudin, D.: Informational complexity and efficient methods for solution of convex extremal problems. Wiley, New York, 1983
  10. Nesterov, Yu.: The technique of nonsmooth differentiation. Izvestija AN SSSR, Technicheskaja kibernetika 1, 199–208 (1987), in Russian
  11. Nesterov, Yu.: Efficient methods in nonlinear optimization. Radio i Zviaz', Moscow, 1989 (in Russian)
  12. Nesterov, Yu.: Introductory lectures on convex optimization: Basic course. Kluwer, Boston, 2003
  13. Nesterov, Yu., Nemirovski, A.: Interior-point polynomial algorithms in convex programming. SIAM, Philadelphia, 1994
  14. Renegar, J.: A mathematical view of interior-point methods in convex optimization. MPS-SIAM Series on Optimization, SIAM, Philadelphia, 2001
  15. Rockafellar, R.T.: Convex Analysis. Princeton Univ. Press, Princeton, NJ, 1970
  16. Rockafellar, R.T.: The theory of subgradients and its applications to problems of optimization. Convex and nonconvex functions. Helderman Verlag, Berlin, 1981
  17. Rockafellar, R.T., Wets, R.J-B.: Variational Analysis. Springer-Verlag, Berlin, 1998